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CS 442: Trustworthy Machine Learning
Homework 3

Solutions.

Q1

1.1

Since we know that the MSE loss is a convex function, by Jensen’s Inequality, we know that for a convex function
ϕ(z) and a random variable Z:

ϕ(E[Z]) ≤ E[ϕ(Z)]

Applying this to the mean squared error (MSE), where ϕ(z) = z2 and Z = f(x)− y, we have:

(E[f(x)− Y |X = x])
2 ≤ E

[
(f(x)− Y )2|X = x

]
Since f(x) is a deterministic function and not a random variable, E[f(x)|X = x] = f(x). Thus, the inequality

simplifies to:

(f(x)− E[Y |X = x])
2 ≤ E

[
(f(x)− Y )2|X = x

]
This expression is minimized when f(x) = E[Y |X = x], which makes the left-hand side of the inequality zero.

Therefore, the function f∗(x) that minimizes the expected squared loss is the conditional expectation of Y given
X = x:

f∗(x) = E[Y |X = x]

This is the Bayes optimal predictor under the mean squared error criterion.
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Q2

2.1

Since x1 is directly correlated with y, we want to give it a high weight. Let’s denote this weight as w1.
If we set w1 = α, and wi = β, i = 2 . . . d. The classifier is then:

fw(x) = sgn(w1x1 +

d∑
i=2

βxi)

Since xi follows N (2y/
√
d, 1), then:

d∑
i=2

βxi ∼ N (2(d− 1)βy/
√
d, (d− 1)β2)

We simply set β =
√
d

2
√
d−1

, therefore we have the classifier:

fw(x) = sgn(αx1/
√
d+ Z)

Z ∼ N (y,
d

4
)

Since Z ∼ N (y, d
4 ), which means Pr(Z−y ≤ −td4 ) ≤ exp

(
−t2/2

)
,∀t ≥ 0 and Gaussian distribution is symmetric

along the vertical line of mean value, we know that when x1y > 0, the probability for a wrong prediction can be
calculated:

Pry=1,x=1(Z + α ≤ 0) + Pry=−1,x=−1(Z − α > 0)

= 2Pry=1,x=1(Z + α ≤ 0)

= 2Pry=1,x=1(Z − y ≤ −α− 1)

= 2e−( 4α−1
d )2/2

Similarly, the probability of making a correct prediction when x1y < 0 is then:

2Pry=−1,x=1(Z + α ≤ 0)

= 2Pry=−1,x=1(Z − y ≤ −α+ 1)

= 2e−( 4α+1
d )2/2

Therefore, we can express the general accuracy as:

p ∗ (1− 2e−( 4α−1
d )2/2) + (1− p) ∗ (2e−( 4α+1

d )2/2) ≥ 0.85

Since 0.5 < p ≤ 0.8, d ≥ 25, it’s easy to find a solution for inequality above such that the accuracy for fwn
is at

least 0.85.

e.g. when p = 0.5, take
( 4α

d )2

2 ≈ 1.38 such that e
( 4α

d
)2

2 ≈ 0.24:

accuracy ≈ 0.5(1− 0.24 ∗ 2) + 0.5 ∗ (0.24 ∗ 2) ≈ 1
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2.2.1

Since we know that the adversary budget ϵ = 4√
d
≤ |y|, It is manifest that any perturbation to x1 can not have

impact on the sign of the output if we set w′
1 = 1, w′

i = 0,∀i ≥ 2, because in such w′, the classifier f ′ is:

fw′(x+△x) = sgn(x1 +△x1)

And for w ∈ Rd,∃i ≥ 2, wi ̸= 0 such that we have:

fw′(x+△x) = sgn(x1 +△x1 +

d∑
i=2

wi(xi +△xi))

To compare the ℓr (w
′) , ℓr(w) consider the impact of the ℓ∞ perturbation. For w, the adversary can induce

additional misclassification by perturbing x2, . . . , xd. However, for w′, the adversary’s impact is limited as x1 can
only take values ±y, and small perturbation by at most ϵ do not change its sign. Thus, there exists a ℓr(w

′) is less
than ℓr(w), proving that a better classifier in terms of robust error exists.

2.2.2

In 2.2.1 we know that w′ = wr remains robust under any perturbation on x1, since |x1| > ϵ ≥ △x1, the maximum
0-1 loss for such classifier is thus:

wr = {1, 0, 0, . . . , 0}

For wr, the classifier decision is based solely on the sign of x1, which matches the label y with probability p,
since x1 = +y with probability p and x1 = −y with probability 1− p.

Therefore, the robust error ℓr (wr) is the probability of misclassification under the worstcase perturbation.
However, since wr ignores x2, . . . , xd, the only source of error is when x1 does not match y, which happens with
probability 1− p. Therefore, ℓr (wr) = 1− p.

ℓr(wr) = E

[
max

∥∆x∥∞≤ 4√
d

ℓ01 (fwr (x+∆x), y)

]
= Pr(x1 = −y) = 1− p

2.3

According to 2.2.2, fwr
is a classifier that relies solely on the first feature x1, with wr = (1, 0, 0, . . . , 0). The standard

error is computed as E [ℓ01 (fwr (X), Y )], which is the expected 0-1 loss.

E

[
max

∥∆x∥∞≤ 4√
d

ℓ01 (fwr
(x+∆x), y)

]
= Pr(x1 = −y) = 1− p

Compared with other w setting that we have shown in 2.1 which achieves higher accuracy than wr, we have
seen that there is a non-zero gap in terms of the standard accuracy between the robust classifier and the original
classifier.
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Q3

3.1

Since we have c ≥ 0, to optimize mint,x c
⊤t, we are essentially minimizing each component of t subject to the

constraints:

t = ReLU(Ax)

But the constraints is not a linear function and does not span a convex feasible region for (Ax, t), making it
unsolvable via Linear Programming.

Figure 1: ReLU function

To linearize this, we need to express it in terms of linear inequalities:

• t ≥ 0: This constraint comes directly from the definition of ReLU. Since ReLU never outputs negative values,
t, which is the output of ReLU, must be non-negative.

• t ≥ Ax: This constraint represents the case where Ax > 0. In this scenario, the ReLU function outputs Ax
itself, so t, being the output of ReLU, must be at least Ax. This constraint does not contradict the case where
Ax ≤ 0 because when Ax is negative or zero, t ≥ Ax is still valid as t ≥ 0 or more.

Therefore, after such relaxation, the convex feasible region is:

Figure 2: Linear Constraints

It is easy to find that the mint,x c
⊤t must have t = max(0, Ax), since they are lower bound of the constraints,

which is always equals to the original constraint t = ReLU(Ax)
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3.2.1

No, In 3.1, we have shown that the objective function is linear, specifically cT t, and the ReLU function t = ReLU(Ax)
can be linearized under the condition that c ≥ 0

But for (1)the objective function is (ey − et)
T (W2z2), where the previous restrictions on each component of

linear combinations no longer holds.
Therefore, minimizing the objective function is no longer equivalent to minimizing all the component of t,

formally we have:

c′ = (ey − et) = {0, 1, 0 . . . ,−1, 0} =⇒ ∃c′i < 0

Therefore, under such scenario, minimizing the objective function involves maximizing corresponding i-th com-
ponent of W2z2 and therefore all the contributing element in ReLU(W1z1), but if we follow the same relaxation in
3.1, we will have no upper bound available to determine the max value of z2 even with restriction ||z1 − x||∞ ≤ ϵ.
Hence we have proved that the method in 3.1 is not applicable to 3.2.

3.2.2

To show the 2 formulations are equivalent, we first consider a = 0, Then we have the constraints:

• t− x ≥ 0

• t ≥ 0

• −t ≥ 0

• x− l − t ≥ 0

Since we know that l ≤ x ≤ u, then x− l ≥ 0, combining with the other constraints, they eventually simplifies
to y = 0, then we consider the case a = 1, the constraints are then:

• t− x ≥ 0

• t ≥ 0

• u− t ≥ 0

• x− t ≥ 0

Similarly, we can simplify them to t = x.
Since ReLU(x) = max(0, x), if we set a = 0 whenx <= 0 and a = 1 when x > 0. it perfectly works as a ReLU.

3.2.3

The number of auxiliary binary variables introduced corresponds to the number of neurons in the hidden layer of
the network, which is the dimension of z2 in the case given.

Therefore, If W1 is a matrix of size p × d, then there are p neurons in the hidden layer, and thus p binary
variables ai are introduced.

5



Q4

4.1

Start with the Definition of Total Variation Distance: Consider the total variation distance between the distributions
of neighboring datasets M(X) and M (X ′) :

dTV (M(X),M (X ′)) =
1

2

∑
t∈Y

|Pr[M(X) = t]− Pr [M (X ′) = t]|

Using the definition of ε-differential privacy, we know that for each t ∈ Y :

Pr(M(X) = t) ≤ eε · Pr (M (X ′) = t)

Pr (M (X ′) = t) ≤ eε · Pr(M(X) = t)

These inequalities imply that:

|Pr(M(X) = t)− Pr (M (X ′) = t)| ≤ (eε − 1) ·max (Pr(M(X) = t),Pr (M (X ′) = t))

Summing this inequality over all t ∈ Y gives:

∑
t∈Y |Pr(M(X) = t)− Pr (M (X ′) = t)| ≤ (eε − 1) ·

∑
t∈Y max(Pr(M(X) = t),Pr (M (X ′) = t))

Since the sum of probabilities over all possible outcomes t for a probability distribution is 1, we have:∑
t∈Y

max (Pr(M(X) = t),Pr (M (X ′) = t)) ≤ 1

Therefore:

1

2

∑
t∈Y

|Pr(M(X) = t)− Pr (M (X ′) = t)| ≤ 1

2
(eε − 1)

Since ϵ is small, then we have eϵ ≈ 1 + ϵ, therefore we can say that:

dTV (M(X),M (X ′)) =
1

2

∑
t∈Y

|Pr[M(X) = t]− Pr [M (X ′) = t]|

≤ 1

2
(eϵ − 1)

≤ 1

2
ϵ

≤ ϵ
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4.2

For datasets X and X ′ differing in one position, differential privacy guarantees that for any T ⊆ Y :

Pr(M(X) ∈ T ) ≤ eε · Pr (M (X ′) ∈ T )

Consider datasets X and X ′ differing in k positions. We can think of transitioning from X to X ′ through k
intermediate datasets X1, X2, . . . , Xk−1, where each Xi differs from Xi−1 in exactly one position (with X0 = X and
Xk = X ′ ).

Applying the differential privacy guarantee to each pair of neighboring datasets in the sequence, we get:

Pr (M (Xi−1) ∈ T ) ≤ eε · Pr (M (Xi) ∈ T ) , for i = 1, 2, . . . , k.

Chaining these inequalities together, we obtain:

Pr(M(X) ∈ T )

= Pr (M (X0) ∈ T ) ≤ eε · Pr (M (X1) ∈ T ) ≤ . . . ≤ ekε · Pr (M (Xk) ∈ T ) = ekε · Pr (M (X ′) ∈ T )

Therefore, we have shown that:

Pr(M(X) ∈ T ) ≤ exp(kε) · Pr (M (X ′) ∈ T )
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Q5

5.1

Since Z ∼ Lap( 1
nϵ ) with location 0 and scale parameter 1

nϵ , by definition we have:

Var(Z) =
2

(nϵ)2
⇒ σ =

√
2

(nϵ)2

Since we are essentially trying to bound the Z noise between 10
nϵ , That is to say, we want to find a bound such

that the probability is at least 0.95, or conversely, the probability of deviation beyond this bound is at most 0.05.
By Chebyshev’s inequality, we know that for Z ∼ Lap(0, 1

nϵ ) [1]:

Pr(|Z| ≥ kσ) =
1

k2
≤ 0.05

Setting 1
k2 = 0.05 we solve for k:

1

k2
= 0.05

k =
√
20

We can then apply this k to the standard deviation of Z:

kσ =
√
20×

√
2

(nϵ)2

=
√
40× 1

nϵ

Since −10
nϵ < −

√
40

nϵ <
√
40
nϵ < 10

nϵ , this suggests that the bound provided in the question is within the range
determined by Chebyshev’s inequality. Therefore, the inequality holds with a probability of at least 0.95.
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5.2

For the Laplace distribution Z ∼ Lap(0, 1
nϵ ) we can write the corresponding PDF as [2]:

f

(
z | 0, 1

nϵ

)
= nϵ exp(−nϵ|z|)/2

Figure 3: Laplace PDF

Due to the fact that it is symmetric along the line z = 0, the region for Pr(|Z| ≥ t
nϵ ) is thus:

Pr(|Z| ≥ t

nϵ
) = 2× Pr(Z ≥ t

nϵ
)

= 2

∫ ∞

t
nϵ

nϵ exp(−nϵz)/2dz

= 2

[
−1

2
exp(nϵz)

]∞
t
nϵ

= 2

[
0−

(
−1

2
exp(−t)

)]
= exp(−t)

5.3

Since we know that: Pr(|Z| ≥ t
nϵ ) = exp(−t) from 5.2, to prove the inequality given, we are essentially looking for

the probability of −t
nϵ ≤ Z ≤ t

nϵ is at least 0.95:

Pr(|Z| ≥ t

nϵ
) ≤ 0.05

exp(−t) ≤ 0.05

t ≥ −ln(0.05)

Since −ln(0.05) < 3, Therefore, we can say that with probability at least 0.95, the noise Z will be within ± 3
nϵ .

Adding the upper/lower bounds of Z back thus recovers the inequality we would like to verify, hence completes
the proof.
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