CS 442: Trustworthy Machine Learning Homework 3

Solutions.

Q1

1.1

Since we know that the MSE loss is a convex function, by Jensen's Inequality, we know that for a convex function $\phi(z)$ and a random variable Z:

 $\phi(\mathbb{E}[Z]) \leq \mathbb{E}[\phi(Z)]$

Applying this to the mean squared error (MSE), where $\phi(z) = z^2$ and $Z = f(x) - y$, we have:

$$
(\mathbb{E}[f(x) - Y|X = x])^2 \le \mathbb{E}[(f(x) - Y)^2|X = x]
$$

Since $f(x)$ is a deterministic function and not a random variable, $\mathbb{E}[f(x)|X=x] = f(x)$. Thus, the inequality simplifies to:

$$
(f(x) - \mathbb{E}[Y|X = x])^{2} \le \mathbb{E}[(f(x) - Y)^{2}|X = x]
$$

This expression is minimized when $f(x) = \mathbb{E}[Y|X=x]$, which makes the left-hand side of the inequality zero. Therefore, the function $f^*(x)$ that minimizes the expected squared loss is the conditional expectation of Y given $X = x$:

$$
f^*(x) = \mathbb{E}[Y|X=x]
$$

This is the Bayes optimal predictor under the mean squared error criterion.

2.1

Since x_1 is directly correlated with y, we want to give it a high weight. Let's denote this weight as w_1 . If we set $w_1 = \alpha$, and $w_i = \beta$, $i = 2 \dots d$. The classifier is then:

$$
f_w(x) = sgn(w_1x_1 + \sum_{i=2}^{d} \beta x_i)
$$

Since x_i follows $\mathcal{N}(2y/\sqrt{d}, 1)$, then:

$$
\sum_{i=2}^{d} \beta x_i \sim \mathcal{N}(2(d-1)\beta y/\sqrt{d}, (d-1)\beta^2)
$$

We simply set $\beta = \frac{\sqrt{d}}{2\sqrt{d}}$ $\frac{\sqrt{d}}{2\sqrt{d-1}}$, therefore we have the classifier:

$$
f_w(x) = \operatorname{sgn}(\alpha x_1/\sqrt{d} + Z)
$$

$$
Z \sim \mathcal{N}(y, \frac{d}{4})
$$

Since $Z \sim \mathcal{N}(y, \frac{d}{4})$, which means $Pr(Z - y \le -t\frac{d}{4}) \le \exp(-t^2/2)$, $\forall t \ge 0$ and Gaussian distribution is symmetric along the vertical line of mean value, we know that when $x_1y > 0$, the probability for a wrong prediction can be calculated:

$$
\Pr_{y=1,x=1}(Z+\alpha \le 0) + \Pr_{y=-1,x=-1}(Z-\alpha > 0)
$$
\n
$$
= 2\Pr_{y=1,x=1}(Z+\alpha \le 0)
$$
\n
$$
= 2\Pr_{y=1,x=1}(Z-y \le -\alpha - 1)
$$
\n
$$
= 2e^{-(\frac{4\alpha - 1}{d})^2/2}
$$

Similarly, the probability of making a correct prediction when $x_1y < 0$ is then:

$$
2Pr_{y=-1,x=1}(Z + \alpha \le 0)
$$

=
$$
2Pr_{y=-1,x=1}(Z - y \le -\alpha + 1)
$$

=
$$
2e^{-\left(\frac{4\alpha + 1}{d}\right)^2/2}
$$

Therefore, we can express the general accuracy as:

$$
p * (1 - 2e^{-(\frac{4\alpha - 1}{d})^2/2}) + (1 - p) * (2e^{-(\frac{4\alpha + 1}{d})^2/2}) \ge 0.85
$$

Since $0.5 < p \le 0.8, d \ge 25$, it's easy to find a solution for inequality above such that the accuracy for f_{w_n} is at least 0.85.

e.g. when $p = 0.5$, take $\frac{(\frac{4\alpha}{d})^2}{2} \approx 1.38$ such that $e^{\frac{(\frac{4\alpha}{d})^2}{2}} \approx 0.24$: $accuracy \approx 0.5(1 - 0.24 \cdot 2) + 0.5 \cdot (0.24 \cdot 2) \approx 1$

2.2.1

Since we know that the adversary budget $\epsilon = \frac{4}{7}$ $\frac{1}{d} \leq |y|$, It is manifest that any perturbation to x_1 can not have impact on the sign of the output if we set $w'_1 = 1, w'_i = 0, \forall i \geq 2$, because in such w', the classifier f' is:

$$
f_{w'}(x + \triangle x) = \operatorname{sgn}(x_1 + \triangle x_1)
$$

And for $w \in \mathbb{R}^d, \exists i \geq 2, w_i \neq 0$ such that we have:

$$
f_{w'}(x + \triangle x) = \operatorname{sgn}(x_1 + \triangle x_1 + \sum_{i=2}^d w_i(x_i + \triangle x_i))
$$

To compare the $\ell_r(w)$, $\ell_r(w)$ consider the impact of the ℓ^{∞} perturbation. For w, the adversary can induce additional misclassification by perturbing x_2, \ldots, x_d . However, for w', the adversary's impact is limited as x_1 can only take values $\pm y$, and small perturbation by at most ϵ do not change its sign. Thus, there exists a $\ell_r(w')$ is less than $\ell_r(w)$, proving that a better classifier in terms of robust error exists.

2.2.2

In 2.2.1 we know that $w' = w_r$ remains robust under any perturbation on x_1 , since $|x_1| > \epsilon \geq \Delta x_1$, the maximum 0-1 loss for such classifier is thus:

$$
w_r = \{1, 0, 0, \dots, 0\}
$$

For w_r , the classifier decision is based solely on the sign of x_1 , which matches the label y with probability p, since $x_1 = +y$ with probability p and $x_1 = -y$ with probability $1 - p$.

Therefore, the robust error $\ell_r(w_r)$ is the probability of misclassification under the worstcase perturbation. However, since w_r ignores x_2, \ldots, x_d , the only source of error is when x_1 does not match y, which happens with probability $1 - p$. Therefore, $\ell_r(w_r) = 1 - p$.

$$
\ell_r(w_r) = \mathbb{E}\left[\max_{\|\Delta x\|_{\infty} \le \frac{4}{\sqrt{d}}} \ell_{01} \left(f_{w_r}(x + \Delta x), y\right)\right] = Pr(x_1 = -y) = 1 - p
$$

2.3

According to 2.2.2, f_{w_r} is a classifier that relies solely on the first feature x_1 , with $w_r = (1, 0, 0, \ldots, 0)$. The standard error is computed as $E[\ell_{01}(f_{w_r}(X), Y)]$, which is the expected 0-1 loss.

$$
\mathbb{E}\left[\max_{\|\Delta x\|_{\infty}\leq \frac{4}{\sqrt{d}}} \ell_{01} (f_{w_r}(x + \Delta x), y)\right] = Pr(x_1 = -y) = 1 - p
$$

Compared with other w setting that we have shown in 2.1 which achieves higher accuracy than w_r , we have seen that there is a non-zero gap in terms of the standard accuracy between the robust classifier and the original classifier.

Q3

3.1

Since we have $c \geq 0$, to optimize $\min_{t,x} c^{\top}t$, we are essentially minimizing each component of t subject to the constraints:

$$
t = \text{ReLU}(Ax)
$$

But the constraints is not a linear function and does not span a convex feasible region for (Ax, t) , making it unsolvable via Linear Programming.

Figure 1: ReLU function

To linearize this, we need to express it in terms of linear inequalities:

- $t \geq 0$: This constraint comes directly from the definition of ReLU. Since ReLU never outputs negative values, t, which is the output of ReLU, must be non-negative.
- $t \geq Ax$: This constraint represents the case where $Ax > 0$. In this scenario, the ReLU function outputs Ax itself, so t, being the output of ReLU, must be at least Ax. This constraint does not contradict the case where $Ax \leq 0$ because when Ax is negative or zero, $t \geq Ax$ is still valid as $t \geq 0$ or more.

Therefore, after such relaxation, the convex feasible region is:

Figure 2: Linear Constraints

It is easy to find that the $\min_{t,x} c^\top t$ must have $t = \max(0, Ax)$, since they are lower bound of the constraints, which is always equals to the original constraint $t = \text{ReLU}(Ax)$

3.2.1

No, In 3.1, we have shown that the objective function is linear, specifically $c^T t$, and the ReLU function $t = \text{ReLU}(Ax)$ can be linearized under the condition that $c \geq 0$

But for (1) the objective function is $(e_y - e_t)^T (W_2 z_2)$, where the previous restrictions on each component of linear combinations no longer holds.

Therefore, minimizing the objective function is no longer equivalent to minimizing all the component of t , formally we have:

$$
c' = (e_y - e_t) = \{0, 1, 0 \dots, -1, 0\} \Longrightarrow \exists c'_i < 0
$$

Therefore, under such scenario, minimizing the objective function involves maximizing corresponding i-th component of W_2z_2 and therefore all the contributing element in ReLU(W_1z_1), but if we follow the same relaxation in 3.1, we will have no upper bound available to determine the max value of z_2 even with restriction $||z_1 - x||_{\infty} \leq \epsilon$. Hence we have proved that the method in 3.1 is not applicable to 3.2.

3.2.2

To show the 2 formulations are equivalent, we first consider $a = 0$, Then we have the constraints:

- $t x > 0$
- $\bullet \ \ t \geq 0$
- \bullet $-t \geq 0$
- $x l t \geq 0$

Since we know that $l \leq x \leq u$, then $x - l \geq 0$, combining with the other constraints, they eventually simplifies to $y = 0$, then we consider the case $a = 1$, the constraints are then:

- $t x \geq 0$
- $\bullet\ t\geq 0$
- $u t > 0$
- $x t \geq 0$

Similarly, we can simplify them to $t = x$. Since ReLU(x) = max(0, x), if we set a = 0 when $x \le 0$ and $a = 1$ when $x > 0$. it perfectly works as a ReLU.

3.2.3

The number of auxiliary binary variables introduced corresponds to the number of neurons in the hidden layer of the network, which is the dimension of z_2 in the case given.

Therefore, If W_1 is a matrix of size $p \times d$, then there are p neurons in the hidden layer, and thus p binary variables a_i are introduced.

Q4

4.1

Start with the Definition of Total Variation Distance: Consider the total variation distance between the distributions of neighboring datasets $M(X)$ and $M(X')$:

$$
d_{TV}(M(X), M(X')) = \frac{1}{2} \sum_{t \in Y} |\Pr[M(X) = t] - \Pr[M(X') = t]|
$$

Using the definition of ε -differential privacy, we know that for each $t \in Y$:

$$
\Pr(M(X) = t) \le e^{\varepsilon} \cdot \Pr(M(X') = t)
$$

$$
\Pr(M(X') = t) \le e^{\varepsilon} \cdot \Pr(M(X) = t)
$$

These inequalities imply that:

$$
|\Pr(M(X) = t) - \Pr(M(X') = t)| \le (e^{\varepsilon} - 1) \cdot \max(\Pr(M(X) = t), \Pr(M(X') = t))
$$

Summing this inequality over all $t \in Y$ gives:

$$
\sum_{t \in Y} \left| \Pr(M(X) = t) - \Pr(M(X') = t) \right| \le (e^{\varepsilon} - 1) \cdot \sum_{t \in Y} \max(\Pr(M(X) = t), \Pr(M(X') = t))
$$

Since the sum of probabilities over all possible outcomes t for a probability distribution is 1, we have:

$$
\sum_{t \in Y} \max\left(\Pr(M(X) = t), \Pr(M(X') = t)\right) \le 1
$$

Therefore:

$$
\frac{1}{2}\sum_{t\in Y}|\Pr(M(X) = t) - \Pr(M(X') = t)| \le \frac{1}{2}(e^{\varepsilon} - 1)
$$

Since ϵ is small, then we have $e^{\epsilon} \approx 1 + \epsilon$, therefore we can say that:

$$
d_{TV}(M(X), M(X')) = \frac{1}{2} \sum_{t \in Y} |\Pr[M(X) = t] - \Pr[M(X') = t]|
$$

\n
$$
\leq \frac{1}{2} (e^{\epsilon} - 1)
$$

\n
$$
\leq \frac{1}{2} \epsilon
$$

\n
$$
\leq \epsilon
$$

4.2

For datasets X and X' differing in one position, differential privacy guarantees that for any $T \subseteq Y$:

$$
\Pr(M(X) \in T) \le e^{\varepsilon} \cdot \Pr(M(X') \in T)
$$

Consider datasets X and X' differing in k positions. We can think of transitioning from X to X' through k intermediate datasets $X_1, X_2, \ldots, X_{k-1}$, where each X_i differs from X_{i-1} in exactly one position (with $X_0 = X$ and $X_k = X'$).

Applying the differential privacy guarantee to each pair of neighboring datasets in the sequence, we get:

$$
\Pr\left(M\left(X_{i-1}\right)\in T\right)\leq e^{\varepsilon}\cdot\Pr\left(M\left(X_{i}\right)\in T\right),\text{for }i=1,2,\ldots,k.
$$

Chaining these inequalities together, we obtain:

$$
\Pr(M(X) \in T)
$$

= $\Pr(M(X_0) \in T) \le e^{\varepsilon} \cdot \Pr(M(X_1) \in T) \le \dots \le e^{k\varepsilon} \cdot \Pr(M(X_k) \in T) = e^{k\varepsilon} \cdot \Pr(M(X') \in T)$

Therefore, we have shown that:

$$
\Pr(M(X) \in T) \le \exp(k\varepsilon) \cdot \Pr(M(X') \in T)
$$

Q5

5.1

Since $Z \sim \text{Lap}(\frac{1}{n\epsilon})$ with location 0 and scale parameter $\frac{1}{n\epsilon}$, by definition we have:

$$
Var(Z) = \frac{2}{(n\epsilon)^2} \Rightarrow \sigma = \sqrt{\frac{2}{(n\epsilon)^2}}
$$

Since we are essentially trying to bound the Z noise between $\frac{10}{n\epsilon}$, That is to say, we want to find a bound such that the probability is at least 0.95, or conversely, the probability of deviation beyond this bound is at most 0.05. By Chebyshev's inequality, we know that for $Z \sim \text{Lap}(0, \frac{1}{n\epsilon})$ [1]:

$$
\Pr(|Z|\geq k\sigma)=\frac{1}{k^2}\leq 0.05
$$

Setting $\frac{1}{k^2} = 0.05$ we solve for k:

$$
\frac{1}{k^2} = 0.05
$$

$$
k = \sqrt{20}
$$

We can then apply this k to the standard deviation of Z :

$$
k\sigma = \sqrt{20} \times \sqrt{\frac{2}{(n\epsilon)^2}}
$$

$$
= \sqrt{40} \times \frac{1}{n\epsilon}
$$

Since $\frac{-10}{n\epsilon} < \frac{-\sqrt{40}}{n\epsilon} < \frac{\sqrt{40}}{n\epsilon}$, this suggests that the bound provided in the question is within the range determined by Chebyshev's inequality. Therefore, the inequality holds with a probability of at least 0.95.

For the Laplace distribution $Z \sim \text{Lap}(0, \frac{1}{n\epsilon})$ we can write the corresponding PDF as [2]:

Figure 3: Laplace PDF

Due to the fact that it is symmetric along the line $z = 0$, the region for $Pr(|Z| \geq \frac{t}{n\epsilon})$ is thus:

$$
Pr(|Z| \ge \frac{t}{n\epsilon}) = 2 \times Pr(Z \ge \frac{t}{n\epsilon})
$$

= $2 \int_{\frac{t}{n\epsilon}}^{\infty} n\epsilon \exp(-n\epsilon z)/2dz$
= $2 \left[-\frac{1}{2} \exp(n\epsilon z) \right]_{\frac{t}{n\epsilon}}^{\infty}$
= $2 \left[0 - \left(-\frac{1}{2} \exp(-t) \right) \right]$
= $\exp(-t)$

5.3

Since we know that: $Pr(|Z| \geq \frac{t}{n\epsilon}) = \exp(-t)$ from 5.2, to prove the inequality given, we are essentially looking for the probability of $\frac{-t}{n\epsilon} \leq Z \leq \frac{t}{n\epsilon}$ is at least 0.95:

$$
Pr(|Z| \ge \frac{t}{n\epsilon}) \le 0.05
$$

exp(-t) ≤ 0.05
 $t \ge -\ln(0.05)$

Since $-\ln(0.05) < 3$, Therefore, we can say that with probability at least 0.95, the noise Z will be within $\pm \frac{3}{n_{\epsilon}}$. Adding the upper/lower bounds of Z back thus recovers the inequality we would like to verify, hence completes the proof.

5.2

References

- [1] Wikipedia contributors. Chebyshev's inequality Wikipedia, the free encyclopedia. https://en. wikipedia.org/w/index.php?title=Chebyshev%27s_inequality&oldid=1182723320, 2023. [Online; accessed 13-November-2023].
- [2] Wikipedia contributors. Laplace distribution Wikipedia, the free encyclopedia, 2023. [Online; accessed 13- November-2023].