
1 Distributed systems
Examples: client/server, the web, the internet, DNS, Gnutella,
BitTorrent, “cloud”, NCSA, AWS datacenter
Definitions: “A collection of independent computers that appear
to the users as a single computer”, “Several computers doing some-
thing together”, “A distributed system is a collection of entities,
each of which is autonomous, programmable, asynchronous and
failure-prone, and which communicate through an unreliable com-
munication medium.”
Goals: heterogeneity, robustness, availability, transparency (hides
internal workings from users), concurrency, efficiency, scalability,
security, openness

2 Clouds
Types: public (provide services to any paying customer) or private
(accessible only to company employees)
Benefits: save time and money!
Definition: Lots of storage + compute cycles nearby
Single-site architecture: compute nodes grouped into racks;
switches connecting racks (both top-of-rack and core); hierarchi-
cal network topology
History: first datacenters (1940s to 1960s), timesharing and data
processing companies (1960s to 1980s), grids (1980s to 2000s), clus-
ters (1980s to present), clouds and datacenters (2000s to present)
Doubling periods: storage (12 months), bandwidth (9 months),
CPU capacity (18 months)
Modern cloud features: massive scale, on-demand access,
data-intensive nature, new programming paradigms (MapReduce,
Hadoop, NoSQL)
WUE: Annual water usage

IT equipment energy - low is good

PUE: Total facility power
IT equipment power - low is good

“As a service”: hardware (barebones machines), infrastructure
(AWS, Azure), platform (Google App Engine), software (Google
Docs)
Data-intensive computing: Network/disk I/O more important
than CPU utilization
Academic clouds: Emulab, PlanetLab
Public research clouds: needs grant; Chameleon Cloud, CloudLab

3 MapReduce
Map: parallelly process lots of records to generate key/value pairs
Reduce: processes and merged intermediate values per key; parti-
tions keys for parallelism (shuffle)
Sorting: Map output sorted with quicksort, reduce input sorted
with mergesort
Filesystems: map input (distributed), map output (local), reduce
input (multiple remote disks to local), reduce output (distributed)
YARN: global Resource Manager (scheduling), per-server Node
Manager, per application Application Master (negotiates with RM
and NMs, detect failures)
Locality: HDFS stores 3 replicas of each chunk (2 on one rack, 1 on
another); MApReduce tries to schedule a job on a) a machine with
a replica of input, b) on the same rack as a machine with replica of
input, or c) anywhere

4 Gossip
Multicast: disseminates message to group of nodes; nodes can
crash and packets can be dropped; protocol should be reliable
(atomic, 100% delivery) and fast
Centralized: slow (O(n) time to broadcast) and not fault-tolerant
(what if sender failed halfway through sending?)
Tree-based: build spanning tree; failed nodes may not pass on
message until tree is repaired; tree maintenance is hard; ACK/NAK
floods could occur
Gossip: periodically picks b random nodes and sends messages to
them; needs deduplication; all nodes start sending messages as well
once “infected”
Push gossip: start gossiping after receive message; if multiple mes-
sages, gossip random subset, or recently-received, or higher priority;
lightweight in large groups, spreads quickly, fault-tolerant
Pull gossip: poll randomly selected processes for new messages
Infection: continuous time process

x0 = n, y0 = 1,
dx

dt
= −βxy

x =
n(n + 1)

n + eβ(n+1)t
, y =

(n + 1)

1 + ne−β(n+1)t

Epidemic multicast: β = b/n, so at time t = c log n,

y = (n + 1) −
1

ncv−2

So, within c log n rounds [low latency], all but 1
ncb−2 have re-

ceived the message [reliability] and each node has transmitted no
more than cb log n messages [lightweight]
Fault tolerance: Packet loss (50% loss, analyze with b replaced
with b/2, takes twice as many rounds for same reliabiltiy), node
failure (50% fail, analyze with n/2 and b/2, same as above)
Pull vs. push: for both, takes O(log N) rounds for N/2 to get
gossip; after first half, pull is faster, as it takes O(log log N) time
Topology-aware: for random selection, core routers face O(N)
load. Fix: pick target in your subnet i with probability 1 − 1/ni.

5 Grid Computing
Condor (now HTCondor): Such systems 1)Run on a lot of work-
stations 2)When workstation is free, ask site’s central server (or
Globus) for tasks 3)If user hits a keystroke or mouse click, stop
task (Either kill task or ask server to reschedule task) 4)Can also
run on dedicated machines.
Globus: External Allocation & Scheduling Stage in & Stage out of
Files
Security Issues: 1)Single sign-on: collective job set should require
once-only user authentication 2)Mapping to local security mecha-
nisms: some sites use Kerberos, others using Unix 3)credentials to
access resources inherited by subcomputations, e.g., job 0 to job 1
4)Community authorization: e.g., third-party authentication

6 Failure detection
Goals: scalable (equal load per member), fast (time until some pro-
cess detects failure), complete (each failure detected), accurate (no
mistaken detection); impossible to have both accuracy and com-
pleteness (or could solve consensus!)
Preferred: Guaranteed completeness, partial accuracy guarantee
Centralized heartbeating: all ping one node, if no ping from pi
received within timeout, declare pi failed. Bad: O(N) load on cen-
tral node
Ring: ping neighbors. Unpredictable on multiple simultaneous fail-
ures
All-to-all: equal load per member, but a single heartbeat loss
means a false detection
Gossip: nodes periodically gossip membership list to random
nodes; on receipt, merged with local membership list; member
marked as failed when entry times out, deleted after cleanup pe-
riod to prevent ghost entries
Analysis: heartbeat takes O(log N) time to propagate, so N heart-
beats take O(log N) time to propagate for O(N) bandwidth per
node, O(N log N) time for O(1) bandwidth, O(N

k
log N) for O(k)

bandwidth. If Tgossip is decreased, bandwidth increases, detection
time stays unchanged. If Tfail, Tcleanup increased, make fewer mis-
takes, bandwidth unchanged, detection time increases.
Load: All-to-all: L = N/T ; gossip: T = log N · tg, L = N/tg =
N log N/T ; optimal: independent of N!
SWIM: every period T ′, pi sends ping to pj ; if pj ACKs, pj de-
clared alive; if no ACK, request indirect ping from k random pro-
cesses
SWIM detection time: probability of being pinged in T ′ =
1− (1− 1

N
)N−1 = 1− e−1, so E[T] = T ′ · e

e−1 , so complete: any
alive member detects failures

Time-bounded completeness: round-robin pinging, randomly
permute list after each traversal. Failure is detected in worst case
2N − 1 protocol periods
Member dissemination: piggyback on failure detector messages
for infection-style dissemination; maintain buffer of recently joined
and evicted processes and prefer recent updates
Suspicion: per-process incarnation number, only pi can increment
pi’s number; higher #s override lover #s; for given #, suspect >
alive, failed > anything else
In industry: used by Serf/Consul, Uber’s ringpop

7 Peer-to-peer systems
Napster: napster server maintains <filename, addres, port> tu-
ples but no files; clients upload list of files to server; client queries
server for keyword, server responds with list of tuples; clients
communicate with each other, selecting the best host for transfer;
uses TCP
Gnutella: eliminates servers, clients act as servers too; clients
connected in overlay graph; messages are routed within the overlay
graph
Gnutella protocol: Query (search), QueryHit (response to query),
Ping (probe network for peers), Pong (reply to ping with address of
another peer), Push (initiates file transfer); header contains unique
descriptor ID, type, TTL (decremented at each hop, dropped at 0),
hops (incremented at each hop), payload length
Gnutella search: flooded out, ttl-restricted, only forward once;
QueryHits routed on reverse path
Avoiding excessive traffic: peer maintains list of recently received
messages; query forwarded fo all neighbors except query source;
queries forwarded only once; QueryHit routed back only to peer from
which Query received; duplicates are dropped; QueryHit with unseen
ID is dropped
QueryHit response: requester chooses ”best” responder, initi-
ates HTTP request directly to peer, peer replies with file packets.
HTTP is used (standard, debugged, Range header supported
Firewalls: if unable to reach peer, routes a Push to responder and
has the responder send a HTTP-like GIV message, requester then
sends GET as before
Pingpong: Ping flooded out, Pong routed along reverse path; used
to update set of neighboring peers periodically
Problems: ping/pong constituted 50% of traffic (solution? mul-
tiplex, cache, reduce frequency), repeated searches (cache Query
+ QueryHit messages), freeloaders (70% of users in 2000), flooding
results in excessive traffic
FastTrack: like Gnutella, but with supernodes! Peers become
supernodes by earning reputation; supernodes store <filename,
peer pointer> like Napster; peer searches by querying supernode
BitTorrent: files split into blocks; person wanting file first gets
tracker from a website, then asks tracker for peers, then gets blocks
from peers
Optimizations: dowload Local Rarest Block first (early download
of blocks that are least replicated among neighbors), tit for tat
bandwidth (provide blocks to neighbors with best download rates),
choking (limits # neighbors to which concurrent uploads allowed)
Distributed hash table: allows lookup, insertion, and deletion of
objects (files) with keys
Perf: [mem,lookup,#msg for lookup] Napster (O(1) for all, O(N)
mem@server), Gnutella (O(N) all), Chord (O(log N) all)
Chord: uses consistent hashing on node addresses;
SHA1(address,port) ← 160 bit string, truncate to m bits; called
peer ID, between 0 and 2m − 1, maps to 2m logical points on
circle, At node n, send query for key k to largest successor/finger
entry ¡= k if none exist, send query to successor(n)

Finger table: ith entry at peer with ID n is first peer with id
>= (n + 2i) mod 2m

Files: same consistent hash, file with key K stored at first peer
with ID >= K mod 2m; for query, send to largest finger table en-
try <= K, if none exist, send to successor; repeat, takes O(log N)
time total
New peers: O(log N) finger entries affected, O(log N ∗ log N)
messages per join (similar for leave); stabilization protocol that
checks and updates pointers and keys to ensure non-loopiness;
strong stability takes O(N2) stabilization rounds
Pastry: virtual ring with node IDs, like Chord; routing tables based
on prefix matching (think: hypercube), so routing is O(log N) and
network hops are short
Routing: nodes maintain list of neighbors matching prefixes of its
own address with the nth bit differing; to route to a peer, forward
to neighbor with largest matching prefix
Kelips: 1-hop DHT; k affinity groups, k ≈

√
N; nodes hashed to

groups mod k, each group has one contact node in each other
group

8 Key/value stores & NoSQL
Abstraction: basically a dictionary (insert, lookup, delete by key)
Relational databases: don’t match today’s workloads (large &
unstructured data, lots of random reads/writes, foreign keys rarely
needed, joins infrequent)
Modern workloads: need speed; avoid single point of failure; scale
out, not up
NoSQL: “Not Only SQL”; API needs get(key) and put(key, value);
sometimes extended SQL-like operations (see “CQL” for Cassandra)
Tables: “column families” in Cassandra, “tables” in HBase, “collec-
tions” in MongoDB; often unstructured (no schema); don’t necessar-
ily support joins or foreign keys, but can have indices like RDBMs
Column-oriented storage: NoSQL typically store column or group
of columns together, columns are indexed for fast lookup; useful be-
cause range searches can be fast (no need to fetch whole DB)
Cassandra: Ring-based DHT, but no finger tables or routing; of-
fers eventual consistency (replicas converge if writes stop)
Placement strategies: simple (Random partitioner, like Chord;
ByteOrdered, assigns ranges of keys to servers); network topology
(multi-DC deployments: first replica per Partitioner, then go clock-
wise until different rack)
Snitches: Map IPs to racks and DCs; simple (rack-unaware), rack
inferring (x.DC octet.Rack octet.Node octet), property file (config),
EC2 (region = DC, availability zone = rack)
Writes: send write to one coordinator in cluster, coordinator talks
to replicas; once X replicas respond, ack to client; if any replica
is down, buffer until back online, then write (buffer up to a few
hours); one ring per DC
Writes at replicas: log to disk; change memtable (in-memory rep-
resentation of multiple K/V pairs, write-back); flush to disk as
SSTable (immutable, sorted by key, uses bloom filter) when full
Bloom filter: set all hashed bits, to query, check if all hashed bits
are set
Compaction: merges SSTables by key
Deletes: add tombstone; compaction will delete later
Reads: coord contacts X replicas, when X respond, return latest
value
CAP: any two of consistency, availability, partition-tolerance n a
distributed system you can satisfy at most 2 out of the 3 guarantees
BASE: Basically-Available Soft-state Eventual consistency
Consistency levels: ANY, ALL, ONE, QUORUM
Quorum: majority (> 50%), any two quorums intersect; W + R >
N, W > N/2
W,R: W=R=1 for few R/W; W=N,R=1 for R-heavy; W=R=N/2+1
for W-heavy; W=1,R=N for W-heavy with one client/key
Linearizability: each operation available simultaneously to all
clients
Sequential consistency: result of any execution is same as if op-
erations of all processors were executed in some sequential order,
and operations of each processor appear in sequence in the order
specified by program (find reasonable order after the fact)
Per-key sequential: per key, all operations have a global order
CRDTs: Cumulative Replicated Data Types; commutated writes
give same results
Red-blue consistency: blue ops executed in any order across DCs,

red ops executed in same order at each DC
Levels: Eventual, casual, red-blue/per-key, probabilistic/CRDTs,
strong/sequential
HBase: Get/Put, Scan(range/filter), MultiPut; table split into re-
gions (replicated); ColumnFamily (subset of columns with similar
patterns); one Store per ColumnFamily+region; Memstore per store
(flushed to disk when full); StoreFiles for each region; HFile (list
SSTable); strong consistency via write-ahead log; replay stale logs
after failure recovery or bootup (select via timestamps); coordina-
tion via Zookeeper
MongoDB: BSON (Binary JavaScript Object Notation) documents;
group of related docs with common index called a collection; data
split in chunks, sharded into collections of chunks, shards assigned
to replica set, which is multiple servers (usually 3), replica set mem-
bers mirror each other (one is primary, other secondaries); routers
send queries to correct replica set; oplog to sync data; read con-
cern (primary, primary-preferred, secondary, nearest, majority) -
secondary might fetch stale data; write concern (0 no ack, 1 pri-
mary ack, majority) - weaker concern implies faster write; journal
in write-ahead log for durability; chunks split when grow too large,
and migrated among shards if uneven distribution; either strongly
or eventually consistent, depending on R/W concerns

9 Time and ordering
Clock skew: relative difference in values
Clock drift: relative difference in rates/frequencies
Synchronization: max drift rate (MDR); max drift between two
clocks with same MDR is 2MDR; for acceptable skew M, clocks
must sync ever M/(s ∗MDR) units
Cristian’s: P → S = min1, S → P = min2; T = [t + min2, t +
RTT −min1], err < (RTT −min2 −min1)/2
NTP: offset = (tr1 − tr2 + ts2 − ts1)/2
Lamport: happens-before = →; rules: a) a → b in same process is
time(a) < time(b), b) send(m) → receive(m), c) transitivity; cre-
ates partial order
Impl: process keeps local counter; increments on send or in-
struction; messages carry timestamps; on receive, counter becomes
max(local, msg timestamp) + 1
Concurrent: no causal path from one event to the other; Lamport
cannot distinguish concurrent events
Vector timestamps: process i maintains vector Vi[1...N];
when i has instruction or send, increment element i; messages
carry entire vector; when receive at i, Vi[i]+ = 1, Vi[j] =
max(Vmessage[j], Vi[j])∀j ̸= i

Causally-related: iff V T1 < V T2, i.e. V T1 ≤ V T2, and ∃j such
that 1 ≤ j ≤ N and V T1[j] < V T2[j]; events are concurrent iff
NOT V T1 ≤ V T2 AND NOT V T2 ≤ V T1

10 Snapshots
Def: individual state of each process and communication channel;
assume FIFO and no failure or message duplication
Chandy-Lamport: initiator Pi records state; send Marker mes-
sage on all outgoing channels and start recording incoming messages
on each incoming channel; when msg received, a) first Marker, so
record state, mark incoming channel empty, send marker message to
other processes, record on incoming channels except self and source
of marker; b) already seen, so mark state of incoming channel as all
arrived messages since recording started; ends when all processes
have received marker on all N − 1 incoming channels

Cut: time frontier at each process/channel; events before cut are
“in the cut”; cut is consistent if it obeys causality: for all pairs
e, f, if e in cut and f → e, then f also in cut; Chandy-Lamport
snapshot creates consistent cut Let’s quickly look at the proof 1.
Let ei and ej be events occurring at Pi and Pj, respectively such
that ei -¿ ej (ei happens before ej) The snapshot algorithm ensures
that if ej is in the cut then ei is also in the cut. That is: if ej -¿
¡Pj records its state¿, then it must be true that ei -¿ ¡Pi records its
state¿. if ej → ¡Pj records its state¿, then it must be true that ei
-¿ ¡Pi records its state¿. By contradiction, suppose ej -¿ ¡Pj records
its state¿ and ¡Pi records its state¿ -¿ ei. Consider the path of app
messages (through other processes) that go from ei -¿ ej. Due to
FIFO ordering, markers on each link in above path will precede reg-
ular app messages Thus, since ¡Pi records its state¿ -¿ ei , it must
be true that Pj received a marker before ej. Thus ej is not in the
cut =¿ contradiction

11 Paxos
Goals: safety (no disagreement), liveness (protocol ends)
Synchronous: with at most f crashing, run f + 1 rounds; Valuesr

i
:

proposed values known to pi at beginning or round r; Values0
i

= ;

Values1
i

= vi; for rounds 1 to f +1, multicast(Valuesr
i
−Valuesr−1

i
,

Valuesr+1
i

← Valuesr
i

, for each Vj received, Valuesr+1
i

=

Valuesr+1
i

∪ Vj ; di = min(Valuesf+2
i

)
Paxos: provides safety, eventual liveness; asynchronous rounds; 3
phases: election, bill, law
Impl: election: potential leader chooses unique higher ballot ID,
send to all processes, processes respond once to highest ballot ID,
if process has previously decided v′, include v′ in response, become
leader when a quorum responds with OK; bill: leader sends pro-
posed v to all, use v = v′ if received during election, recipient
responds OK; law: if leader hears majority OKs, tell everyone deci-
sion. decision reached when majority of processes are about to/have
responded with OK
Handling problems: P restarts (use log to retrieve a past decision
and past- seen ballot ids), leader fails (start new round), anyone
can start a round any time, may never end
FLP Proof: Proof Setup: Configuration=global state. Collection
of states, one for each process; alongside state of the global buffer.
Each Event (different from Lamport events) is atomic and consists
of three steps 1. receipt of a message by a process (say p) 2. pro-
cessing of message (may change recipient’s state) 3. sending out of
all necessary messages by p. Schedule: sequence of events Lemma 1:
Disjoint schedules are commutative, Lemma 2: Some initial config-
uration is bivalent (Place all configurations side-by-side (in a lat-
tice), where adjacent configurations differ in initial xp value for
exactly one process. There has to be some adjacent pair of 1-valent
and 0-valent configs, Let the process p, that has a different state
across these two configs., be the process that has crashed (i.e., is
silent throughout). Therefore, both these initial configs. are bi-
valent when there is such a failure). Lemma 3: Starting from a
bivalent config., there is always another bivalent config. that is
reachable. Theorem (Impossibility of Consensus): There is always
a run of events in an asynchronous distributed system such that the
group of processes never reach consensus (i.e., stays bivalent all the
time)

12 Multicast
Forms: multicast (to group), broadcast (all processes), unicast
(one-to-one)
FIFO ordering: multicasts from each sender received in order they
are sent, at all receivers; each receiver maintains vector of sequence
numbers that is the latest sequence number that was received from
a given process

1

Causal ordering: send events that are causally-related must be re-
ceived in same causality-ordering order at all receivers; send entire
vector with each message

Total ordering: aka “atomic broadcast”, ensures all receivers re-
ceive all multicasts in the same order (if P delivers message m be-
fore m′, then any P ′ that delivers m′ would already have delivered
m); sequencer approach: Pi sends M to group and sequencer, se-
quencer maintains S and increments/broadcasts it when receives a
message; Pj buffers until sequencer message received and local se-
quence counter + 1 = received sequence number
Hybrid: FIFO/Causal orthogonal to Total, hybrid approaches that
satisfy both can exist
Virtual/View synchrony: combines membership+multicast pro-
tocol
Views: each process maintains a membership list (view); VS guar-
antees all view changes are delivered in same order at all correct
processes; VS ensures a) set of multicasts delivered in a given view
is the same set at all correct processes that were in the view (what
happens in view stays in view), b) sender of multicast message also
belongs to view, and c) if Pi does not deliver M in V , while other
processes in V delivered M in V , then Pi will be forcibly removed
from next view at other processes
Problems: susceptible to partitioning

13 Leader election
Goal: elect exactly one agreed-upon leader
Guarantees: safety (all non-faulty processes choose same process
or null), liveness (all election runs terminate and elected process is
not null)
Ring election: process discovering failed coordinator sends “elec-
tion” msg with own ID; for received msg: a) ID is greater, so for-
ward, b) ID is smaller and p not forwarded an earlier election mes-
sage, overwrite with own ID and forward; c) if ID is same as process,
p is now leader, sends “elected” msg; safe and live if no failures; best
case 2N messages, worst case 3N − 1 messages
Bully: all processes know all IDs; process discovering failed coor-
dinator does a) if knows its own ID is highest, sends “coordinator”
message to all processes with lower IDs, or b) sends “election” mes-
sage to processes with higher IDs. If no answer within timeout,
becomes leader and sends “coordinator” to all lower IDs. If an-
swer, wait for “coordinator” message; if none after timeout, start
new election. Process receiving “election” replies “OK” and starts
own leader election protocol (unless already done so); safe if failures
stop; worst case O(N2), best case (N − 2) “coordinator” messages
Consensus to solve election: each process proposes a value, group
reaches consensus on Pi’s value, Pi becomes leader
Chubby: potential leader asks for votes from other servers, each
server votes for at most one leader, server with majority (quo-
rum) becomes leader, informs others. After election finishes, other
servers promise not to run election again for “a while” “While” =
time duration called “Master lease”

14 Mutual exclusion
Uses: DFS; safe/consistent access to objects; server coordination
Properties: safety (essential, only one process in CS at any time),
liveness (essential, every request granted eventually), ordering (de-
sirable, requests granted in the order received)
Semaphore: allows max accessors, wait/signal
System model: reliable channels, FIFO, no failure
Perf: bandwidth (total messages sent per enter/exit operation),
client delay (incurred at each enter exit operation, assuming no pro-
cess in or waiting), synchronization delay (interval between one CS
exit and next CS enter, assuming only one waiting)
Central: master keeps queue of waiting requests and a token; sends
token to process on its turn; process sends token back on CS exit;
safe, live, and FIFO!; bandwidth (2 enter, 1 exit), client (2 msg
latencies for req + grant), sync (2 msg latencies); but master is
bottleneck/SPoF
Ring-based: 1 token, wait til get token, pass token on exit, pass
on if not waiting; safe and live; bandwidth (up to N in system on
enter, 1 on exit), client (best case, have token; worst case, just sent
token to neighbor), sync (1 to N − 1)
Ricart-Agrawala: multicast request with Lamport timestamp,
wait for all to respond OK; requests granted in order of causal-
ity (smaller first); 2(N − 1) messages per enter, client delay = 1
RTT, sync delay = 1 message transmission time

Maekawa: process associated with voting set; intersection of
any two voting sets must be non-empty (quorums!), K sets, M

sets/process, K = M =
√

N is best; 2
√

N per enter,
√

N per exit,
client delay = 1 RTT, sync delay = 2 message transmission times,
can have a deadlock
Chubby: Paxos-like consensus; advisory locks only (no mutex guar-
anteed unless every clicnt checks locks before access)

15 RPCs & concurrency control
Local Procedure Call: exactly-once semantics
RPC Semantics: at most once (Java RMI), at least once (Sun
RPC), maybe/best-effort (COBRA)

Idempotent: applied multiple times without any side effects; can
be used with at-least-once semantics
Marshalling: convert req/res into common, platform independent
representation
Transactions: either completes and commits all operations, of
aborts with no effect
ACID: atomic (all or nothing), consistency (if starts in consistent
state, transaction ends in consistent state), isolation (transactions
performed without interference from other transactions), durability
(all effects saved in permanent storage after transaction completed
successfully)
Serial equivalence: interleaving of transactions is serially equiv-
alent iff some ordering of transactions which gives the same end
result as the original interleaving
Conflicting operations: if combined effect depends on order of
execution (R then W, W then R, W then W)
Checking serial equivalence: iff all pairs of conflicting operations
are executed in the same order for all objects they both access (la-
bel all pairs (T 1, T 2) or (T 2, T 1), all pairs should be marked the
same)
Upshot: at commit point, check for serial equivalence with all other
transactions’ if not equivalent, abort T and roll back writes that T
did
Pessimistic CC: prevent transactions from accessing same object
(locking; use R/W locks for better perf)
Optimistic CC: assume the best, allow transactions to write, but
check later; higher concurrency and transactions per second
Two-phase locking: transaction cannot acquire or promote any
locks after it has started releasing locks (growing/shrinking phase;
strict: only release locks at commit point); proof of serial equiva-
lence by contradiction (growing/shrinking phases would overlap)
Deadlocks: mutual exclusion, no preemption, circular wait all nec-
essary
Basic optimistic CC: check serial equivalence at commit time, roll
back if abort (problem: cascading aborts)
Timestamp ordering: assign each transaction and ID; ID deter-
mines position in serialization order; ensure for T a) T ’s write to O
allowed only if transactions that have R/W O had lower IDs than
T , and b) T ’s read to O allowed only if O was last written by trans-
action with lower ID than T ; abort if violation
Multi-version CC: maintain per-transaction tentative version and
committed version; each tentative version has timestamp; on R/W,
find “correct” tentative version to R/W from (tries to make trans-
actions only R/W from “immediately previous” transactions
Eventual consistency: form of optimistic concurrency control in
K/V stores
Cassandra/DynamoDB: last write wins (overwrite only if new
write’s timestamp > current timestamp)
Riak: vector clocks! Implements causal ordering, detect if a) new
write is strictly newer than current value, or b) if new write con-
flicts with existing value. For b) sibling value is created to be resolved
by user/application; size/time based pruning to prevent clocks from
getting too many entries

16 Replication control
Motivation: fault-tolerance, load balancing, availability (with
replication, probability of available replica is (1 − fk)), trans-
parency (client doesn’t know multiple copies exist), consistency (all
clients see consistent copy of data)
Passive replication: use primary replica
Active replication: treat all replicas identically; multicast inside
replica group with any type of multicast ordering; handle failures
with virtual synchrony
One-copy serializability: true if equivalent to a serial execution
of transactions over a single logical copy of the database
Transactions: might touch object on multiple servers, need atomic
commit (consensus!)
One-phase commit: coordinator server initiates atomic commit
Two-phase commit: coordinator sends “prepare”; servers save up-
dates to disk, respond with Y/N; if coordinator receives all Y within
timeout, tell servers to commit updates from disk to store; other-
wise, abort all
Paxos: server proposes message for next sequence number, group
reaches consensus (or not); allows for “no” votes

17 Scheduling
Goals: throughput, high utilization of resources
FIFO/FCFS: queue in arrival order, execute when processor free
(average completion time might be high)
STF: order tasks by running time, run shortest task first (optimal
(minimal average completion time), can lead to starvation; special
case of priority scheduling)
Round-robin: run portion of task, preempt after quantum expires,
add to end of queue (preferable for interactive applications)
Hadoop Capacity Scheduler: multiple queues (possibly hierar-
chical), each queue contains multiple jobs; each queue guaranteed
some portion of cluster capacity; elasticity (can occupy more re-
sources if they’re free; no preemption
Hadoop Fair Scheduler: goal is for all jobs to get equal share of
resources; cluster divided into pool, resources divided equally be-
tween pools; configurable scheduler within pool; preemption allowed
(kill most recently started tasks to minimize wasted work; OK be-
cause tasks are idempotent)
Estimating task lengths: hard; can estimate (proportional to size
of input; weighted average by input size across other tasks in job)
Dominant-Resource Fair Scheduling: tries to handle multi-
resource requirements (mem/CPU/etc.); jobs have resource vectors
< N CPUs, M GB RAM >; for a given job, the % of its dominant
resource type that it gets cluster-wide is same for all jobs (Job 1
RAM dominant, Job 2 CPU dominant, Job 1 % RAM = Job 2 %
CPU)

18 Distributed file systems
Unix FS: file descriptors (handle for process to access file); must
open file before reading/writing; descriptor maintains R/W pointer
to offset within file; R/W automatically advances pointer
Distributed FS: client does RPC to perform file ops; desirable
properties: transparency (behaves like local FS), concurrent clients,
replication (fault tolerance)
One-copy update semantics: when file is replicated, contents vis-
ible to clients are no different from when only 1 replica
Client API: read/write specifies absolute position and num bytes,
position maintained by client (should be idempotent and stateless,
unlike Unix)
NFS: client integrated with kernel, performs RPC to server; server
allows mounting files and directories (essentially, pointers); allows
processes to access file descriptors (transparency!); server caching
(store recently access blocks in memory (supports locality of ac-
cess)); writes: delayed (flush every 30s, fast but not consistent),
write-through (write to disk immediately, consistent but maybe
slow);
client caching (T c = time of cache entry last validated, T m = time
when block last modified at server, block valid at T if (T −Tc < t)
or (T mclient = T mserver), delayed write to server on write)
AFS: whole file serving/caching (based on assumptions that most
files accessed by single server, most files small, files read more often
than written, reads typically sequential), Venus client, Vice server,
optimistic reads/writes, opened files get callback promise (Vice no-
tifies Venus if another client modifies/closes)

19 Distributed shared memory
Benefit: same code as if running on same multiprocessor OS
Impl: cache maintained at each process, stores recently accessed
pages; pages mapped in local memory; on page fault, kernel invokes
DSM
Protocol: Owner is process with latest version; page in R or W
state; when page in R state, owner has R copy, others may have R
copies, no W copies; when page in W state, only owner has copy
Read: [O?, R]: read from cache; [null, other R]: ask for copy, mark
R, do read; [null, other W]: ask other to degrade to R, ask for copy,
mark R, do read
Write: [O, W]: write to cache; [O, R]: invalidate others, mark W, do
write; [O, R]: invalidate others, mark W, become owner, do write;
[null]: invalidate others, fetch latest copy, mark W, become owner,

do write
Invalidate downsides: two processes writing concurrently (flip-
flopping, false sharing)
Update: multiple can have in W state; on write, multicast up-
dated part of page; preferred when lots of sharing, writes are to
small variables, or large page sizes

20 Sensor networks
Node: sensors, microprocessor, comms link, power
Transmission: RF (store and forward, bidirectional), optical (di-
rectional antennas, costly broadcast, line of sight needed, passive
routing (“wormhole”), unidirectional links)
TinyOS: event-driven (hardware events), modular structure (com-
ponents), static allocation
Power saving: MICA (active, idle, sleep)
Optimization: transmit is expensive, so compute instead of trans-
mit; build trees among nodes, calculate summaries in trees, trans-
mit only summaries

21 Structure of networks
Properties: Clustering coefficient (P (AB|(AC&&CB)), path
length (shortest path); Extended ring graph (high CC, long paths),
Random (low CC, short paths), Small world (high CC, short paths)
Small-world resilience: most nodes have small degree, few nodes
have high degree; killing lots of random nodes won’t disconnect, but
a few high-degree nodes will

22 Stream/graph processing
Motivation: have lots of data, want high throughput and low la-
tencies
Storm: tuples (An ordered list of elements), streams (Sequence of
tuples), bolts(A Storm entity (process) that Processes input streams
Outputs more streams for other bolt) , spouts (A Storm entity (pro-
cess) that is a source of streams), typology (cycles possible)
Grouping: Shuffle (Streams are distributed evenly among the
bolt’s tasks, Round-robin fashion), Fields Grouping(Group a stream
by a subset of its fields), All Grouping (All tasks of bolt receive all
input tuples)
Bolts: parallelize by splitting streams among multiple tasks (group-
ing: shuffle, fields, all)
Cluster: master (runs Nimbus, distributes codes, assigns tasks,
monitors failures), worker (runs supervisor, receives work, runs ex-
ecutors that run groups of tasks), Zookeeper (coordinates commu-
nication, stores state)
Twitter Heron: uses backpressure, better throughput
Spark: Resilient Distributed Datasets (RDDs), immutable parti-
tioned collections of records built through map/join/etc.; log oper-
ations and recompute lost portions if failure occurs
Graph processing: shortest paths (routing, degrees of separation),
matching (dating), PageRank
Algorithm: work in iterations; each vertex gets a value; in each
iteration, a vertex a) gathers values from immediate neighbors, b)
does computation with own/neighbor values, c) updates value and
sends to neighboring vertices (gather, apply, scatter); terminates
after fixed iterations or values stop changing
Processing: assign each vertex to a server; perform gather-apply-
scatter for all assigned vertices; assign based on hash or locality
(assign vertices with more neighbors to same server as neighbors,
reduces traffic after each iteration)
Pregel: master/worker (P2P workers); data persisted on DFS;
fault-tolerance via checkpointing and recovery; fast!

23 Spark
MapReduce can be expensive for some Iterative, Interactive appli-
cations Lacks efficient data sharing
Resilient Distributed Datasets (RDDs): 1)Immutable, parti-
tioned collection of records, 2)Built through coarse grained trans-
formations (map, join ...), 3)Can be cached for efficient reuse
Fault Recovery: Lineage (1. Log the coarse grained operation
applied to a partitioned dataset 2. Simply recompute the lost par-
tition if failure occurs! 3. No cost if no failure) RDDs track the
graph of transformations that built them (their lineage) to rebuild
lost data

24 Security
CIA: confidentiality (no unauthorized disclosure), integrity
(no unauthorized alteration), availability (data always read-
able/writable)
Terminology: policy (what a secure system does), mechanism (how
the system accomplishes goals)
Golden A’s: authentication, authorization, auditing
Symmetric key systems: KAB shared only by Alice and Bob
(Data Encryption Standard)
Public-private key systems: KApriv known only to Alice,
KApub known to everyone (RSA, PGP)
Details: Shared keys hard to revoke; public/private keys involve
costly en/decryption (solution? use to generate shared key)

Signatures: authentic, unforgeable, verifiable, non-repudiable:
[M, KApriv(Hash(M))] (hash for efficiency)
Authorization: Access Control Matrix (large & sparse), Access
Control Lists (per object, allowed principals/access), Capability
Lists (per principal, list of files & access types)

25 Datacenter Disasters
Outages in Data Centers: Inevitable occurrences with examples
including AWS, Facebook, and The Planet. Keeping users informed
is crucial through frequent updates, compensations, and detailed
post-mortems to maintain customer confidence.
Real-Time Information and Transparency: Companies like
Google (Apps status dashboard) and AWS offer real-time dash-
boards. Others, like RIM and Hostway, have been less transparent
or faced extended outages.
Datacenter Fault-Tolerance: Essential, akin to addressing hu-
man ailments. Emphasizes the importance of thorough testing and
having a fallback plan, as seen in American Eagle’s case.
Cascading Failures: Outages often result from a series of cascad-
ing failures, necessitating strategies to interrupt this chain.
Data Availability and Recovery: Paramount, requiring cross-
data center replication and consistent, up-to-date documentation,
highlighted by a prolonged Google AppEngine outage.
Various Sources of Outages: Include DDoS attacks, internet
disruptions (e.g., undersea cable cuts, DNS failures, government
intervention), and the necessity of solutions like alternate DNS
services.
Planned and Unexpected Outages: While many failures are un-
expected, planned outages for maintenance also demand meticulous
planning and documentation.

2

