1 Introduction

Internet: Billions of connected computing devices,

Protocol: Protocols define format, order of messages sent and

Precioved among network entities, and actions taken on message

transmission, receivit, (

Digital Subscriber Line: voice, data transmitted at different
requencies over dedicated line to central office Use existing
telephone line to central office DSLAM, data over DSL phone line
goes to Internet, voice over DSL

Typically used in companies, universities, etc.

• 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates

Wireless Access Networks: Shared wireless access network connects end system to router via base station aka "access point" **Wireless LANs:**within building (100 ft.), 802.11b/g/n (WiFi):

11,54,450 Mbps transmission rate

11,54,450 Mbps transmission rates are wireless access: provided by telco (cellular) operator, 10's km, between 1 and 10 Mbps, 3G, 4G: LTE

Hots:

Hots: Hots: Hots: Hots: and in the main o

1) cars "propagate" at 100 km/hr 2)
toll booth takes 12 sec to
service car (bit transmission time) 3) car bit; caravan 7 time to
"push" entire caravan through toll booth onto highway: 12x10 =
120 sec, time for last car to

HTTP request message: two types of HTTP messages: request, response

Packet Loss: queue (aka buffer) preceding link in buffer has
finite capacity, packet arriving to full queue dropped (aka lost),
lost packet may be retransmitted by previous node, by source end
system, or not at all
Through

Internet protocol stack: application: supporting network applications (FTP, SMTP, HTTP) transport: process-process data
plications (FTP, SMTP, HTTP) transport: process-process data
destination (IP, routing protocols), link

Client-server: esruer: always-on host, permanent IP address,
data caters for scaling; clients: communicate with server may be
intermittently connected, may have dynamic IP addresses, do not
communicate directly with each o

Identifier: to receive messages, process must have identifier;
identifier includes both IP address and port numbers associated
with process on host.
App-layer protocol: defines types of messages exchanged, mes-
sage syntax

throughput file transfer no loss elastic e-mail no loss elastic no Web documents elastic no loss no yes, 100's msec audio: 5kbps-1Mbps real-time audio/video loss-tolerant video:10kbps-5Mbps ves, few secs stored audio/video loss-tolerant same as above yes, 100's ms interactive games loss-tolerant few kbps up yes and no text messaging no loss elastic no **Socket programming:** Two socket types for two transport ser-vices: UDP: unreliable datagram (User Datagram Protocol) TCP: reliable, byte stream-oriented (Transmission Control Protocol) UDP: no "connection" between client & server Socket programming with TCP JUP: no connection between client & server
no handshaking before sending data
sender explicitly attaches IP destination address and
port # to each packet client must contact se rver process to
iunicate with that port # to each packet
receiver extracts sender IP address and port# from socket (door) that welcome:
received packet articular client
• allows server to talk with
multiple clients acts server by chents
ort numbers used
guish clients (more UDP: transmitted data may be lost or received
out-of-order source port
to distingui:
in Chap 3) Creating TCP socket,
specifying IP address, port
number of server process Application viewpoint:
• UDP provides unreliable transfer of groups of bytes
• UDP provides unreliable transfer of groups of bytes
• ("datagrams") between client and server
• ("datagrams") between client and server

time sensitive

HTTP: hypertext transfer protocol: client/server model
elient: hypertext transfer protocol; client/server model
elient: browser that requests, receives, (using HTTP protocol)
HTTP protocol) objects in response to requests.

NOS)

Statement: Travisory (ACTIC 1997)

Noongri text/html.application/xhtml+wnl\r

Noongri text/html.application/xhtml+wnl\r

Hooget-Engenge: arus an: que, 3.

Noongt-Engenge: arus and the state of the state of the state
 Method types: HTTP/1.0: GET, POST, HEAD (asks server to
leave requested object out of response) HTTP/1.1: GET, POST,
HEAD, PUT, (uploads file in entity body to path specified in
URL field), DELETE (deletes file specified i

Cookies: four components: 1) C ookie header line of HTTP
response message 2) Cookie header line in next HTTP request
message 3) Cookie file kept on user's host, managed by user's
browser 4) Back-end database at Website

Web caches (proxy server) user sets browser: Web accesses
via cache. browser sends all HTTP requests to cache. object
in cache: cache returns object. else cache requests object from
origin server, then returns object to cl

Conditional GET Goal: don't send object if cache has up-to-date cached version −→ no object transmission delay −→ lower link utilization.

Electronic mail Three major components: 1)
user agents 2) mail Streets and Transfer Protocol servers 3) SMTP: Simple Mail Transfer Protocol
user Agent: a.k.a. "mail reader", composing, editing, reading mail
mail messages,

SMTP uses persistent connections, SMTP requires message
(header & body) to be in 7- bit ASCII, SMTP server uses
CRLF.CRLF to determine end of message . TP. TP: push. both have
ASCII command/response interaction, status cod

HTP response time: One RTT for HTP request and first few bytes of HTTP response. ASCII characters only
to return + file transmission time = non-persistent HTTP re-Sponse Mail Access protocols retrieval from server: POP: Po

server aliasing, load distribution, replicated Web servers: many
iP addresses correspond to one name
client wants IP for www.amazon.com; 1 st approximation: 1)
client queries root server to find com DNS server 2) client qu

2 Application Layer

rdt2.1: Sender, handles garbled ACK/NAKs, Handles bit cor-ruptions that are detected by checksum, Uses a 1-bit sequence number to detect retransmission at receiver

xtract(rcvpkt.data ver_data(data
_send(ACK)

Internet network layer

DHCP: example 1) connecting laptop needs its IP address, addr
of first-hop router, addr of DNS server: use DHCP router with
DHCP server built into router. 2) DHCP request encapsulated
in UDP, encapsulated in IP, encapsulat

datagrams with source or

destination in this network
have 10.0.0/24 address for source, destination (as usual)

NAT router must: 1) outgoing datagrams: replace (source IP
address, port #) of every outgoing datagram to (NAT IP address,
new port #) 2) remember (in NAT translation table) every (source
pair 3) incoming datagrams: rep

NAT: network address translation local network uses just one IP address as far as outside world is concerned. Advantages:
1) range of addresses not needed from ISP: just one IP address
for all devices 2) can change addresses of devices in local net-
work without notifying outside wo

local network
(e.g., home network)
10.0.0/24

ona,

 $10.0.0.1$ $\overline{\mathbf{v}}$

 $0.0.0.3$

₽

¥

.
ork

 $\sqrt{2}$

lower red packet is blocked

EED

 \overline{a}

Reducing Input Queueing: **Why?** Reduce HOL blocking, Avoid packet drops at input queues, Save on queue memory, **How?** Increase switch fabric speed, Increase inbound capacity of output ports

Output ports buffer: required when datagrams arrive from
fabric faster than the transmission rate (How much buffering?
RFC 3439 rule of thumb: average buffering equal to "typical"
RTT (say 250 msec) times link capacity C,

arrival to queue \cdot tail drop: the participal packet
 \cdot tail drop: trop arriving packet
 \cdot *priority:* drop/remove on priority basis
 \cdot *random:* drop/remove randomly

real world example?

-
- uses link-state algorithm
-
- link state packet dissemination
- topology map at each node
- route computation using Dijkstra's algorithm
- topology map at each node
froute computation using the search link, multiple cost metrics for different ToS
router floods OSPF link-state advertisements to all for seatellite link cost set low for best effort ToS; high
rou
-
-
- -

Software defined networking (SDN) a logically centralized
control plane?, easier network management: avoid router mis-
configurations, greater flexibility of traffic flows, table-based
forwarding allows "programming" route

* packet-out: controller can send
this packet out of specific switch por

tables

packet-in: transfer packet (and its control) to controller. See packetflow-removed: flow table entry deleted at switch port status: inform controller of a change on a port.

- (1) S1, experiencing link failure
using OpenFlow port status
message to notify controller
	- 2 SDN controller receives
OpenFlow message, updates
link status info
	- (3) Dijkstra's routing algorithm application has previously
	- registered to be called when ever link status changes. It is called.
	- $\textcircled{4}$ Dijkstra's routing algorithm
access network graph info, link
state info in controller,
computes new routes
	-
	-

SDN network-control apps: 1) "brains" of control: implement
control functions using lower-level services, API provided by SDN
controller 2) unbundled: can be provided by 3rd party: distinct
from routing vendor, or SDN cont

intent

switch info

flow tables

Dijkstra's link-state

statistics

Link-state info

a s iiin-
Routing

hostinfo

SDN challenges, hardening the control plane: dependable, reli-
able, performance-scalable, secure distributed system, robustness
able, performance-scalable, secure distributed system, robustness
tem for control plane, dep

Network management includes the deployment, integration and
coordination of the hardware, software, and human elements to
monitor, test, poll, configure, analyze, evaluate, and control the
network and element resources to

Link layer: introduction has responsibility of transferring data-
gram from one node to physically adjacent node over a link
(terminology: hosts and routers: nodes, communication channels
that connect adjacent nodes along

header fields, Error detection not 100% reliable!, protocol may miss some errors, but rarely, larger EDC field yields better detec-tion and correction **Parity checking**

Cyclic redundancy check more powerful error-detection coding
view data bits, D, as a binary number, choose r+1 bit pattern
(generator), G, goal: choose r CRC bits, R, such that, jD,R_&
exactly divisible by G (modulo 2),

Multiple access links, protocols 1) point-to-point RPP for
dial-up access, point-to-point link between Etherent switch, host,
2) broadcast (shard wire or medium), old-fashioned Ethernet,
upstream HFC, 802.11 wireless LAN

Random access protocol: when node has packet to send, trans-
mit at full channel data rate R., no a priori coordination among
nodes, two or more transmitting nodes -*i* "collision", random
access MAC protocol specifies:,

recover from collisions (e.g., via delayed retransmissions), exam-
ples of random access MAC protocols; slotted ALOHA, ALOHA,
Slotted ALOHA (CD, CSMA/CA
Slotted ALOHA assumptions: 1) all frames same size, 2) time
divided i

 $CSMA$ (carrier sense multiple access): listen before transmitting
if channel sensed idle: transmit entire frame, if channel sensed
busy, defer transmission. collisions can still occur: propagation
delay means two nodes may

• collisions detected within short time • colliding transmissions aborted, reducing channel wastage collision detection:

- easy in wired LANs: measure signal strengths, compare
transmitted, received signals difficult in wireless LANs: received signal strength
- overwhelmed by local transmission strength human analogy: the polite conversationalist

Summary of MAC protocols 1) channel partitioning, by time,
frequency or code, Time Division, Frequency Division, 2) random
access (dynamic), ALOHA, S-ALOHA, CSMA, CSMA/CD, carrier
sessing: easy in some technologies (wire)

 t_{prop} = max prop delay between 2 nodes in LAN $\cdot t_{trans}$ = time to transmit max-size frame

• efficiency goes to 1

decentralized!

+ as t_{prop} goes to 0
+ as t_{trans} goes to 0

 $efficiency = \frac{1}{1 + 5 \ t_{prop} / t_{trans}}$

better performance than ALOHA: and simple, cheap

"Taking turns" MAC protocols

nsmission wnii
nsmitting, abo
nds jam signal

After aborting, NIC enters

ary (exponential) backoff:
after mth collision, NIC
chooses K at random from
 $\{0,1,2,...,2^m.1\}$. NIC waits
K'512 bit times, returns to

longer backoff interval
with more collisions

Ethernet CSMA/CD algorithm

receives datagram
vork laver, creates

2. If NIC senses channel idle,
starts frame transmission. If
NIC senses channel busy,
waits until channel idle, the
transmits.

3. If NIC transmits entire fra
without detecting another
transmission, NIC is done
with frame !

• primary node "invites

with pattern 10101011, used to synchronize receiver, sender clock
rates
rates
addresses: 6 byte source, destination MAC addresses, if adapter
receives frame with matching destination address, or with broad-
cast address (e

many different Ethernet standards

• common MAC protocol and frame format

- · different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps,
- 10 Gbps, 40 Gbps
- different physical layer media: fiber, cable

 $= p \cdot (1-p)^{2(N-1)}$ will overlap will overlap
with start of with end of
 \leftarrow is frame \rightarrow \leftarrow is frame.

s Alce's "I'm Alice"