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Question 1

1. Shift Invariance

To show that the softmax function is invariant to a constant shift, we would like to verify that:

softmax(z) = softmax(z − C1), where C1 = {C,C,C . . . C}T (1)

By definition we have:

softmax(z− C1)i =
exp (zi − C)∑k
j=1 exp (zj − C)

=
exp (zi) exp(−C)∑k
j=1 exp (zj) exp(−C)

=
exp (zi)∑k
j=1 exp (zj)

= softmax(z)

Hence we proved the statement.

2. Derivative

When i = j:

∂yi
∂zi

=
exp (zi)

∑k
j=1 exp (zj)− exp (zi)

2(∑k
j=1 exp (zj)

)2

we know that yi =
exp (zi)∑k
j=1 exp (zj)

, plug that in gives:

∂yi
∂zi

= yi (1− yi)

Similarly, when i ̸= j:

∂yi
∂zj

=
− exp (zi) exp (zj)(∑k

j=1 exp (zj)
)2

= −yiyj

3. Chain Rule

Given z = W⊤x− u, we can express each element of z as zi = w⊤
i x− ui, where wi is the i-th column of W .
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Use the result from above, we have ∂yi

∂zj
, which we can use in the chain rule:

∂yi
∂x

=

k∑
j=1

∂yi
∂zj

∂zj
∂x

∂zj
∂x

= wj

(
since zj = w⊤

j x− uj

)
Therefore,

∂yi
∂x

=

k∑
j=1

∂yi
∂zj

wj

Similarly,

∂yi
∂wj

=

k∑
l=1

∂yi
∂zl

∂zl
∂wj

Since ∂zl
∂wj

is x when l = j and 0 otherwise,

∂yi
∂wj

=
∂yi
∂zj

x

Finally,

∂yi
∂u

=

k∑
j=1

∂yi
∂zj

∂zj
∂u

Since
∂zj
∂u is -1 at the j-th component and 0 elsewhere,

∂yi
∂u

= −∂yi
∂zi

Question 2

1. Matrix Multiplication

Given V =

[
1√
2

− 1√
2

1√
2

1√
2

]
. Multiplying V by

[
1
0

]
gives:

[
1√
2

− 1√
2

1√
2

1√
2

] [
1
0

]
=

[
1√
2
1√
2

]

And compute V T

[
0
1

]
Multiplying V T by

[
0
1

]
gives:[

1√
2

− 1√
2

1√
2

1√
2

] [
0
1

]
=

[
− 1√

2
1√
2

]
It is clear that V x rotates x ∈ R2 by 45 degrees counterclockwise.

2. Matrix Transpose

To verify that V −1 = V T , For a matrix V , if V −1 = V T , by definition we have:

V V T =

[
1√
2

− 1√
2

1√
2

1√
2

][
1√
2

1√
2

− 1√
2

1√
2

]
=

[
1 0
0 1

]
Since V V T = I, V −1 = V T . As we have shown above, It is clear that V Tx rotates x ∈ R2 by 45 degrees

clockwise.
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3. Diagnal Matrix

The transformed vectors, after applying ΣV ⊤, are as follows:

ΣV ⊤
[ 1√

2

0

]
=

[
1.5
−2.5

]
ΣV ⊤

[
0
1√
2

]
=

[
1.5
2.5

]
ΣV ⊤

[
− 1√

2

0

]
=

[
−1.5
2.5

]
ΣV ⊤

[
0

− 1√
2

]
=

[
−1.5
−2.5

]
These vectors represent the corners of a transformed square. The original square, formed by the vectors,

undergoes a 45-degree clockwise rotation (due to V T ) and then a scaling transformation (due to Σ). The scaling
stretches the square by a factor of 3 along the x-axis and a factor of 5 along the y-axis, resulting in a rectangle.

4. Geometric Interpretation

According to the problem definition, for a general squared matrix B ∈ Rn×n, a similar geometric interpretation would
involve finding its singular value decomposition (SVD) where B = UΣV T , and then interpreting the transformations
in terms of rotations (by U and V T ) and scaling (by Σ).

5. Homogeneous Equation

Given:

A = UΣV T =

[
− 1√

5
2√
5

− 2√
5

− 1√
5

] [
2 0
0 0

][ 1√
2

− 1√
2

1√
2

1√
2

]⊤

From Σ, we see that the second singular value is zero. Therefore, the null space of A is spanned by the second
column of V .

The matrix V is:

V =

[
1√
2

− 1√
2

1√
2

1√
2

]
The second column of V is:

v2 =

[
− 1√

2
1√
2

]
This vector v2 is already of unit length (i.e., ∥v2∥ = 1 ), as it satisfies [1]:∥∥∥∥∥

[
− 1√

2
1√
2

]∥∥∥∥∥ =

√(
− 1√

2

)2

+

(
1√
2

)2

=

√
1

2
+

1

2
=

√
1 = 1

Therefore, the solution to the homogeneous equation Ax = 0 with ∥x∥ = 1 is:

x =

[
− 1√

2
1√
2

]
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Figure 1: Reordered Alma Statue

Question 3

3.1 Reorder

My solution employs a greedy algorithm to reassemble an image from its shredded pieces. This is achieved by
computing the pairwise distances between the shreds based on pixel similarity and iteratively selecting the best
fitting pairs to reconstruct the original image. Specifically, for each pair of shreds, the distance function calculates
the ’distance’ between them, representing how well they fit together. Specifically, it computes the L2 norm between
the last column of one shred and the first column of another. Mathematically, this can be represented as:

dist(Ij , Ii) =

K∑
k=1

(Lj(k)− Fi(k))
2

Where dist(Ij , Ii) is the distance measure between the i-th and j-th image strips, Ij , Ii denotes two different
image strips. Lj(k) is The pixel values in the last column of strip Ij at row k. Fi(k) The pixel values in the first
column of strip Ii at the same row index k. It is manifest that smaller distance indicates larger similarity.

3.2 Align & Reorder

The part 3.2 adapts most data structures and greedy-matching algorithms in 3.1, where the core adjustments lies in
the similarity calculation.. Instead of a straightforward comparison, this function now accounts for vertical sliding,
considering up to 20% of the strip’s height. It calculates the similarity over various alignments by sliding one strip
relative to another, both upwards and downwards, and selects the maximum similarity from these alignments that
will be used for reordering task. At the same time, it will also record the best slide offset between slides for final
composition. There is also a normalization step incorporated to improve quality of final alignment.
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Figure 2: Reordered Person

Figure 3: Aligned Altgeld
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Figure 4: Aligned Campus

Figure 5: Aligned Nature
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Figure 6: Aligned Sonnet

3.3 Noisy Data

The key modification involved redefining the similarity function. Moving away from the sum of squared distances used
previously, we implemented zero mean normalized cross-correlation (ZNCC). This measure, which is essentially the
dot product between normalized pixel vectors, is more robust against variations in lighting and coloration. To further
counteract noise, we modified our approach to consider more than just a single column of pixels. By averaging the
last three columns of each strip, we aimed to mitigate the impact of irregular boundaries and enhance the robustness
of our similarity calculations.

As it is done in 3.2, the similarity function was thus adapted to normalize the pixel values of the strips,
accounting for zero mean and unit norm, before computing the ZNCC. This modification was necessary to achieve
a more accurate assessment of similarity under noisy conditions. The distance function continued to play a crucial
role, now leveraging the revised similarity calculations to ascertain the best alignment and order of the strips, even
with the added noise and irregularities.

Implementing these changes, we managed to stitch the image strips from the scan dataset together. While
the result was not perfect as it is shown in 7. While most shards are rearragend correctly, the left most shred in
the Figure is not correctly matched with the body of the statue. Since the current distance metric works perfect
on all the other pieces and another test shred set. We suspect that the failure is due to the inherent limitation of
greedy-method based matching that failed to find the global optimal order of the shreds. Our observations revealed
that certain regions of the image were more challenging to stitch accurately, likely due to more pronounced noise or
discoloration, highlighting areas for future improvement in our approach.
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Figure 7: Imperfect Matching Result

Figure 8: Successed in Matching Noisy Dogs
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