
Homework 1

Fall 23, CS 442: Trustworthy Machine Learning
Due Friday Sep. 22nd at 23:59 CT

Instructor: Han Zhao

Instructions for submission All the homework submissions should be typeset in LATEX. For all the
questions, please clearly justify each step in your derivations or proofs.

1 Feed-forward Neural Networks [30 pts]

Consider a feed-forward neural network (FNN) with one input layer, one hidden layer and one output
layer shown in Fig. 1a. In this problem we will use the FNN to classify the XOR pattern shown in
Fig. 1b. Suppose that the activation function at every unit in the FNN are linear, i.e., y1 = w1x1 +
w2x2, y2 = w3x1 + w4x2 and y = w5y1 + w6y2 + w0. Classify the input instance (x1, x2) as +1 if
y(x1, x2) ≥ 0 otherwise −1.
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(a) A three-layer feed-forward neural net-
work with two inputs.
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(b) XOR pattern. Instances in blue have label +1 while instances
in red have label −1.
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1.1 [10pts]

For any weight configuration (w0, w1, w2, w3, w4, w5, w6) of the FNN shown above, can you find
another FNN with only two layers, i.e., one input layer with two inputs x1, x2 and one output layer
with one output unit y that computes the same function? If yes, describe a such two-layer FNN and
give the weights as functions of (w0, w1, w2, w3, w4, w5, w6). If no, briefly describe your reasoning.

1.2 [10pts]

Show that there is no weight configuration (w0, w1, w2, w3, w4, w5, w6) under which the FNN shown
in Fig. 1a can classify the XOR pattern with no error.

1.3 [10pts]

For the FNN shown in Fig. 1a, will changing the activation functions at y1 and y2 to be nonlinear help
classify the XOR pattern? If yes, construct a nonlinear activation function f (·) to be applied only
at y1 and y2, i.e., y1(x1, x2) = f (w1x1 + w2x2), y2(x1, x2) = f (w3x1 + w4x2), such that the new
FNN can perfectly classify the XOR pattern. If no, briefly describe your reasoning on why it is not
possible.

2 The Price of Statistical Parity [30pts]

Consider a binary classification problem with two groups. Let (X, A, Y) be the tuple drawn from an
underlying distribution µ. For simplicity, in this problem we assume all the variables are binary, i.e.,
X, A, Y ∈ {0, 1}. Recall from the lecture, in this example we use A to denote the group membership
of an instance, i.e., A = 0 means the majority group whereas A = 1 means the minority group. More
concretely, let p ≥ 1/2 be the marginal probability of A = 0: Prµ(A = 0) = p. To complete
the specification of the joint distribution µ over (X, A, Y), the group-wise distributions over the pair
(X, Y) are given as follows:

• For each group A = a ∈ {0, 1}, the conditional probability Prµ(X = 1 | A = a) = 1/2 is
uniform, i.e., with equal probabilities, X can take either 0 or 1.

• For each group A = a ∈ {0, 1}, Prµ(Y = a | A = a) = 1, i.e., with probability 1 the value of
the target Y equals a.

2.1 [10pts]

Show that there exists a deterministic classifier h : {0, 1} × {0, 1} → {0, 1}, taking the pair (x, a) as
input and predicts the corresponding label, is simultaneously perfect on both groups. Construct such
a deterministic classifier. Note: we say a classifier to be perfect if it achieves 0 classification error on
the corresponding distribution.

2.2 [10pts]

Now we consider a randomized classifier h as follows. Upon receiving the input pair (x, a), a ran-
domized classifier h(x, a) will flip a fair coin. Depending on the outcome of the coin, the randomized
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classifier h(x, a) will make the following prediction:

h(x, a) =

{
0 If the outcome of the fair coin is H
1 If the outcome of the fair coin is T.

2.2.1 [5pts]

What is the classification error rate of this randomized classifier on the joint distribution µ? i.e., what
is Pr(X,A,Y)∼µ(h(X, A) 6= Y)?

2.2.2 [5pts]

Show that despite taking the group membership A explicitly as its input, the above randomized clas-
sifier satisfies statistical parity.

2.3 [10pts]

2.3.1 [8pts]

Prove that, for any deterministic classifier h(X, A)1, if h(X, A) satisfies statistical parity, then

Pr
µ
(h(X, A) 6= Y | A = 0) + Pr

µ
(h(X, A) 6= Y | A = 1) = 1.

2.3.2 [2pts]

Using the result above, show that the overall error rate of h over µ is at least 1− p, i.e., Prµ(h(X, A) 6=
Y) ≥ 1− p.

3 Matrix Calculus [10pts]

A classic problem in unsupervised machine learning is known as symmetric matrix factorization.
Given a matrix P ∈ Rn×n, the goal is to find a matrix X ∈ Rn×k such that P ≈ XX>. In this
problem, we will derive the gradient of the following objective function with respect to X:

min
X∈Rn×k

L(X) :=
1
2
‖P− XX>‖2

F,

where ‖ · ‖F denotes the Frobenius norm of a matrix, i.e,. ‖A‖2
F = ∑m

i=1 ∑n
j=1 A2

ij for A ∈ Rm×n.
One typical application of the above problem is to find an embedding of n objects into a k-dimensional
space, where Pij denotes the similarity between the i-th and j-th objects. The above objective function
encourages the similarity between the i-th and j-th objects to be approximated by the inner product
between the i-th and j-th rows of X.
Please derive the gradient of L(X) with respect to X. Note: you need to show your derivation step by
step, and you need to express the gradient in matrix notation in terms of X and P only.

1This actually also applies to randomized classifiers as well, but in this problem you only need to show this for deter-
ministic classifiers.
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4 The Implicit Bias of Gradient Descent in Linear Regression [30 pts]

Consider a dataset {(xi, yi)}n
i=1 where xi ∈ Rd is the i-th input and yi ∈ R is the i-th label. The loss

function for linear regression on this dataset is given by

min
w∈Rd

L(w) :=
1
2

n

∑
i=1

(w · xi − yi)
2, (1)

where w ∈ Rd is the model parameter of interest. In the course we find the optimal solution w∗

via solving the normal equation. In this problem, instead, we will use the gradient descent method
to numerically find the optimal solution instead. In particular, in order to solve (1), we apply the
following algorithm:

Procedure 1 Gradient Descent for Linear Regression
Input: Initial model parameter w0

1: for t = 1, 2, . . . until convergence do
2: wt ← wt−1 − 1

t∇wL(wt−1)
3: end for
4: return w∗

In this problem, let’s assume that the above algorithm will converge, and we use w∗ to denote the
convergent point.

4.1 [10pts]

Prove that w∗ − w0 ∈ span{x1, . . . , xn}.

4.2 [10pts]

Let X ∈ Rn×d be the data matrix where the i-th row of this matrix is given by x>i , and let y =
(y1, . . . , yn)> ∈ Rn be the label vector.

4.2.1 [5pts]

Show that w∗ satisfies the normal equation, i.e., X>Xw∗ = X>y.

4.2.2 [5pts]

For any vector ŵ ∈ Rd that is the optimal solution of (1), show that w∗ − ŵ ∈ Ker(X), where Ker(·)
denotes the kernel of a matrix.

4.3 [10pts]

Prove that among all the model parameters that optimize (1), w∗ has the minimum distance to w0.
Formally, let W := {ŵ ∈ Rd : ŵ is an optimal solution to (1)}. Prove that w∗ = arg minw∈W ‖w−
w0‖2. Note: this means that gradient descent finds the optimal solution that is closest to the initial
point.

4



Dongheng Lin
September 15th, 2023

CS 442: Trustworthy Machine Learning
Homework 1

Solutions.

Q1

1.1: Given the FNN, the final outcome y can be expressed by following linear function.

y1 = w1x1 + w2x2

y2 = w3x1 + w4x2

y = w5y1 + w6y2

Hence,

y = y1 + y2

= (w5w1 + w6w3)x1 + (w5x2 + w6x4)x2

We can further represent it using a two-layer FNN with parameters above as illustrated in Figure 1

x1 x2

y

w5w1 + w6w3 w5w2 + w6w4

Figure 1: Equivalent 2-layer-FNN

1.2: According to 1.1, we may notice that the decision boundary is actually a straight line in the input space.
Denote an equivalent linear function of the FNN as line L ax1 + bx2 + c = 0.
If two points locate on the same side of a line, it should satisfy following inequality:

(ax1
1 + bx21 + c) ∗ (ax2

1 + bx22 + c) > 0

While for the point pairs that locates on different sides of a line, there is another inequality:

(ax1
1 + bx21 + c) ∗ (ax2

1 + bx22 + c) < 0

According to the figure in the description, we have 2 pairs of data points that should lines on the same sides of
a potential linear classifier (1, 1), (-1, -1) and (1, -1), (-1, 1). Plug that in gives:

(a+ b+ c) ∗ (−a− b+ c) > 0, (1) Since (1, 1) and (-1, -1) lines on the same side

(a+ b+ c) ∗ (a+ b+ c) > 0, (2) Since (1, 1) must lines on the same side of itself

(a+ b+ c) ∗ (a− b+ c) < 0, (3) Since (1, 1) and (1, -1) lines on the different sides

(a+ b+ c) ∗ (−a+ b+ c) < 0, (4) Since (1, 1) and (-1, 1) lines on the different sides
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Combining the first two and last two inequalities above gives the following contradiction:

2c ∗ (a+ b+ c) > 0, adding (1) and (2)

2c ∗ (a+ b+ c) < 0, adding (3) and (4)

Hence, we have found a contradiction, which proves that there can not be a set of a, b, c that makes up a linear
equation that classifies the XOR data points in this problem, which means, there is no {w1, w2, w3, w4, w5, w6} can
make the FNN correctly classifies the XOR problem.
1.3: If we use a special nonlinear sign function σ(yi) as the activation function, then we have:

σ(yi) =

{
1, if yi ≥ −1
−2, if yi < −1

(1)

Now, let’s pick proper weights w1, w2, w3, w4, w5, w6 to construct an FNN such that it correctly classifies the
XOR data points.

For this problem, setting w1 = 1, w2 = −1, w3 = −1, w4 = 1, w5 = 1.1, w6 = 1 should solve the classification.
Plugging in the values:

• for input (1, 1), y(1, 1) = σ(1− 1) + σ(−1 + 1) = 2 > 0, output label +1

• for input (−1,−1), y(−1,−1) = σ(−1 + 1)− σ(1− 1) = 2 > 0, output label +1

• for input (1,−1), y(1,−1) = σ(1 + 1) + σ(−1− 1) = −1 < 0, output label -1

• for input (−1, 1), y(−1, 1) = σ(−1− 1) + σ(1 + 1) = −1 < 0, output label -1

Here, as it is shown, we have constructed a FNN that correctly classifies all the data points given.
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Q2

2.1 Given that Prµ(Y = a|A = a) = 1, the h(x, a) = a always equals actual y. A fair deterministic classifier h can
be a classifier with Y simply copying the input value of a as output, which is:

h(x, a) = a

2.2.1
It is expected to be 1

2 . Because that the randomized classifier h(X,A)does not depend on the x and a, This
means for each time of testing, it has a 50% chance of getting the correct label. Consequently, the classification error
rate is also 50% which can be written as:

Pr(X,A, Y ) ∼ µ(h(X,A) ̸= Y ) = 0.5

2.2.2
The statistical parity requires that the predictions are independent of the protected attribute, which in this

case is A. Under the randomized classifier, we can confirm that the probability of prediction on certain classes is the
same for both values of A. i.e.

Pr(h(X,A = 0) = 1) = Pr(h(X,A = 1) = 1) = 0.5

Pr(h(X,A = 0) = 0) = Pr(h(X,A = 1) = 0) = 0.5

It clearly shows that the classifier is not taking value A in decision making and thus maintains statistical parity.
2.3.1

Considering the dataset follows a rule where Prµ(Y = a|A = a) = 1. We know that:

Prµ(Y = 0|A = 0) = 1

Prµ(Y = 1|A = 1) = 1

Let’s denote the error rates of the classifier on each group as:

e0 = Prµ(h(X,A) ̸= Y |A = 0)

e1 = Prµ(h(X,A) ̸= Y |A = 1)

Given the way the dataset is constructed, where Y equals to A all the time, we can write the above probabilities
into:

e0 = Pr(h(X,A = 0) = 1)

e1 = Pr(h(X,A = 1) = 0)

If there is statistical parity in the classifier, given the equations above, we have:

Prµ(h(X,A = 0) = 1) = Pr(h(X,A = 1) = 1) = e0

Also, within the group A = 1, the probability of 0 is the complement of predicting 1. Hence,
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e1 = 1− e0 = 1− Pr(h(X,A = 1) = 1) = Prµ(h(X,A) ̸= Y |A = 1)

Combining e0 and e1 gives:

e0 + e1 = Pr(h(X,A = 1) = 1) + 1− Pr(h(X,A = 1) = 1) = 1

Thus, we can conclude that for any deterministic classifier h1(X,A) which satisfies statistical parity.

Prµ(h(X,A) ̸= Y |A = 0) + Prµ(h(X,A) ̸= Y |A = 1) = 1

2.3.3
Use the above result that:

Prµ(h(X,A) ̸= Y |A = 0) + Prµ(h(X,A) ̸= Y |A = 1) = 1

The overall error rate over µ can be calculated as:

Prµ(h(X,A) ̸= Y ) = p ∗ Prµ(h(X,A) ̸= Y |A = 0) + (1− p) ∗ Prµ(h(X,A) ̸= Y |A = 1)

= p ∗ Prµ(h(X,A) ̸= Y |A = 0) + (1− p)(1− Prµ(h(X,A) ̸= Y |A = 0))

It is manifest that the overall error rate is minimal when Prµ(h(X,A) ̸= Y |A = 0) = 0, which gives the lower
bound of the overall error rate:

Prµ(h(X,A) ̸= Y ) ≥ 1− p
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Q3

Given that a Frobenious norm have following property:

∥A∥F =

√√√√ m∑
i

n∑
j

|aij |2 =
√

trace (A∗A) =

√√√√min{m,n}∑
i=1

σ2
i (A),

We can use this to express L(X) as:

L(X) =
1

2
tr
[
(P −XXT )T (P −XXT )

]
Given that trace derivation satisfies [1]:

∂tr[AXB]

∂X
= ATBT

So, denote the W = P −XXT taking derivative by chain rule gives:

L(X)

δX
=

L(W )

δW

L(W )

δX

=
1

2
tr[WTW ]

δW

δX

= W
δW

δX

Since (XTX)′ = 2X,

δW

δx
= −2X

Therefore,

L(X)

δx
= W

δW

δX
= (P −XXT )(−2X)

= 2(XXT − P )X
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Q4

4.1 Recall the update step in the gradient descent procedure:

wt = wt−1 −
1

t
∇wL (wt−1)

By derivation, we can express the gradient as:

∇wL(w) =

n∑
i=1

xi (w · xi − yi)

This gradient can be seen as a linear combination of the input vectors x1, x2, . . . xn. Each update of w using
this gradient is therefore in the direction of a linear combination of the xi vectors.

Since the initial value is w0 and all subsequent updates are in the span of the xi vectors, the difference must
also be in the span of {x1, x2, . . . xn}
4.2.1

Given that the L(w) have following forms:

L(w) :=
1

2

n∑
i=1

(w · xi − yi)
2

=
1

2
∥Xw − y∥22

So we can also express its gradient in the form of:

∇L(w∗) =
(
XTX

)
w∗ −XT y

Not that for such a convex function, the optimal point for linear regression is when the gradient is zero, that is:

(
XTX

)
w∗ −XT y = 0

i.e.

XTXw∗ = XT y

4.2.2 To show this we need to use the fact that both w∗, ŵ satisfy the normal equation. Thus we have:

XTXw∗ = XT y

XTXŵ = XT y

The subtraction of these two equations gives:

XTX(w∗ − ŵ) = 0

Since:

XTXv =⇒ vTXTXv = 0 =⇒ ∥Xv∥22 = 0 =⇒ Xv = 0

We can say that:

XTX(w∗ − ŵ) = X(w∗ − ŵ)

= 0
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That is essentially, X(w∗ − ŵ) ∈ Ker(X).
4.3

Let’s consider a gradient descent algorithm with fixed update step length 0 < λ < 1, for every steps of gradient
descent we have:

wk = wk−1 − λ∇L(wk − 1)

=
(
I− λXTX

)
wk + λXTy

By induction, the above equation simplifies to an expression with w0:

wt =
(
I− λXTX

)t
w0 +

t−1∑
j=0

((
I− 1

j
XTX

)j
)

1

k
XTy

By SVD decomposition, we have:

X = UΣVT = U
[
Σ1 O

] [VT
1

VT
2

]
= UΣ1V

T
1

By substitution of X = UΣVT , we have we the second term be:

t−1∑
j=0

((
I− λXTX

)j) 1

t
XTy = V

t−1∑
j=0

((
I− 1

j
ΣTΣy

)j
)

1

t
ΣTUT y

Therefore by definition of SVD matrices, we have:

V

t−1∑
j=0

((
I− 1

j
ΣTΣy

)j
)

1

t
ΣTUT y =

1

t
V ΣT

t−1∑
j=0

((
I− 1

j
ΣTΣy

)j
)
UT y

Notice that the part
(
I− λΣTΣ

)
is actually a diagonal matrix, denote it as P , we have:

Pii =

{
(1− λσ2)j : σi > 0

0 : σi = 0

Since the absolute value of the term 1− λσ2 always less than 1. i.e. |1− λσ2| < 1.
Consider the property of the sum of such infinite series where:

lim
k→∞

k∑
j=0

qk =
1

1− q

Therefore, assuming the steps needed for gradient descent convergence is extremely large, we have:

lim
t→∞

t∑
j=0

P j =

{
1

(λσ2) : σi > 0

0 : σi = 0

Thus, when t → ∞, denote the result as Q:

Q = lim
t→∞

λΣT

t−1∑
j=0

(I− λΣΣT)j

 , where Qii =

{
1/σi : σi > 0

0 : σi = 0
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Since Q is obtained by transposing Σ and taking the reciprocal of all its non-zero diagonal entries (singular
value), we have Q = Σ+ [2]. Substituting Q = Σ+ gives:

V lim
t→∞

λΣT

t−1∑
j=0

(I− λΣΣT)j

UT−→V Σ+UT = X+

Similarly, for the first term, we have:

lim
t→∞

wt =
(
I− λXTX

)t
w0 = 0

Here we may have the whole expression for w∗ be:

w∗ = wt→∞ = X+y

Since X+ is the Moore-Penrose pseudo inverse of X, therefore X+y is the solution (if there is one) with the
smallest euclidean norm [3] [4].
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