
Homework 2

Fall 23, CS 442: Trustworthy Machine Learning
Due Friday Oct. 27th at 23:59 CT

Instructor: Han Zhao

Instructions for submission All the homework submissions should be typeset in LATEX. For all the
questions, please clearly justify each step in your derivations or proofs.

1 Statistical Parity and Equalized Odds [30pts]

1.1 [10pts]

Construct three binary random variables X, A and Y such that X is independent of A, but X is depen-
dent of A given Y.

1.2 [20pts]

In the course we have seen the following incompatibility theorem between statistical parity and equal-
ized odds for a binary classification problem:

Theorem 1: Incompatibility Theorem

Assume that Y and A are binary random variables, then for any binary classifier Ŷ, statistical
parity and equalized odds are mutually exclusive unless A ⊥ Y or Ŷ ⊥ Y.

Give an example of a classification problem where the target variable Y can take three distinct values,
and such that statistical parity and equalized odds are simultaneously achievable.

2 Basics in Information Theory

2.1 [20pts]

Let X be a categorical variable with k possible values, and P, Q be two probability distributions over
X. Define a new random variable X′ as follows:

X′ =

{
X ∼ P, if B = 0,
X ∼ Q, if B = 1,

where B ∈ {0, 1} is an independent and uniform distribution over {0, 1}.
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2.1.1 [10pts]

Show that X′ is distributed according to the mixture distribution M := 1
2 (P + Q).

2.1.2 [10pts]

Show that I(X′; B) = DJS(P, Q), where DJS(P, Q) is the Jensen-Shannon divergence between P and
Q, i.e., DJS(P, Q) = 1

2 DKL(P‖M) + 1
2 DKL(Q‖M).

3 Non-trivial Prediction of the Protected Attribute [10pts]

Let the tuple (X, A, Y) be the random variables corresponding to input data, the protected attribute
and the target variable, respectively. In many cases we can predict both Y and A from the same data
X with reasonable accuracy. Suppose we have a classifier g to predict Y from X. Define the statistical
disparity of g as

∆DP(g) := | Pr
A=0

(g(X) = 1)− Pr
A=1

(g(X) = 1)|,

where we use PrA=a(·) to denote the conditional probability of an event conditioned on A = a.
Clearly, if ∆DP(g) = 0, then g satisfies the statistical parity condition. Show that there exists a
classifier h to predict A from X such that the following error bound holds:

εA=0(h) + εA=1(h) ≤ 1− ∆DP(g),

where εA=a(h) := EA=a[h(X) 6= a].

4 Fair Representations [40pts]

In this problem, we will show that fair representations whose distributions are conditionally aligned
will not exacerbate the statistical disparity. Again, let the tuple (X, A, Y) be the random variables cor-
responding to input data, the protected attribute and the target variable, respectively. In this problem,
we assume both A and Y to be binary variables.
Consider representations Z = g(X) such that Z ⊥ A | Y. For a classifier Ŷ = h(Z) that acts on the
representations Z, let ∆DP(Ŷ) := |PrA=0(Ŷ = 1)− PrA=1(Ŷ = 1)|.

4.1 [10pts]

Show that for any classifier h that acts on the representations Z = g(X), Ŷ = h(Z) satisfies equalized
odds.

4.2 [20pts]

Define γa := PrA=a(Y = 0). Show that for any classifier h over Z, the following inequality holds:∣∣∣∣ Pr
A=0

(Ŷ = y)− Pr
A=1

(Ŷ = y)
∣∣∣∣ ≤ |γ0−γ1| ·

(
Pr(Ŷ = y | Y = 0) + Pr(Ŷ = y | Y = 1)

)
, ∀y ∈ {0, 1}.

2



HW2 CS 442: Trustworthy Machine Learning

4.3 [10pts]

Prove that for any classifier Ŷ = h(Z), ∆DP(h ◦ g) ≤ ∆BR, where ∆BR := |γ0− γ1| is the difference
of base rates. Note: this proposition states that if a classifier satisfies equalized odds, then it will not
exacerbate the statistical disparity of the optimal classifier.
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Dongheng Lin
October 13th, 2023

CS 442: Trustworthy Machine Learning
Homework 2

Solutions.

Q1

1.1

Let X and A be independent binary random variables satisfying X ⊥ A, taking values in 0, 1 with equal probabilities
where:

Pr(X = 1) = Pr(X = 0) =
1

2

Pr(A = 1) = Pr(A = 0) =
1

2

To satisfy the requirement that X ̸⊥ A|Y , we could have construct Y based on X and A:

Y = X ⊕A

Here, ⊕ represents the XOR operation. this means:

Y =

{
1, if X ̸= A
0, if X = A

(1)

Next, let’s prove that this setting satisfies X ̸⊥ A|Y .
Proof : Assume that X ⊥ A|Y , that means:

Pr(X,A|Y ) = Pr(X|Y )P (A|Y )

Pr(X = 0, A = 1|Y = 1) = Pr(X = 0|Y = 1)P (A = 1|Y = 1)

• Under the construction above, since X = 0 given Y = 1 occurs only when A = 1 with a probability of 0.5 and
X ⊥ A. We have:

Pr(X = 0 | Y = 1) = Pr(X = 0, A = 1 | Y = 1) + Pr(X = 0, A = 0 | Y = 1)

=
Pr(X = 0, A = 1)

Pr(X = 0, A = 1) + Pr(X = 1, A = 0)
=

0.25

0.25 + 0.25
= 0.5

• Similarly, we have Pr(A = 1|Y = 1) = Pr(X = 0) = 0.5

Plug them in the equation gives:

Pr(X = 0, A = 1|Y = 1) = Pr(X = 1, A = 0|Y = 1) = 0.5

̸= Pr(X = 0|Y = 1)Pr(A = 1|Y = 1) = 0.25

Hence, we have found a contradiction that proves this setting must satisfyX ̸⊥ A|Y . That means the constructed
X is dependent on A given Y.
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1.2

As an example, Let A be a protected attribute that can take values 0 or 1 with equal probability, i.e.,

P (A = 0) = P (A = 1) = 0.5

Let Y be the target variable that can take values 0, 1, or 2. The distribution of Y given A is:

P (Y = 0|A = 0) =
1

4

P (Y = 1|A = 0) =
1

2

P (Y = 2|A = 0) =
1

4

P (Y = 0|A = 1) =
1

3

P (Y = 1|A = 1) =
1

3

P (Y = 2|A = 1) =
1

3

Here, we can see that A is not independent of Y since there is:

P (Y = 0|A = 0) ̸= P (Y = 0|A = 1) ̸= P (Y = 0)

Now, we define a classifier Ŷ = h(·) takes an input feature X where X ⊥ A,X ̸⊥ Y . Assume X is a feature
ranges from {0, 1, 2} and the distribution of X given Y is:

P (Y = 0|X = 0) = 0.7

P (Y = 1|X = 0) = 0.2

P (Y = 2|X = 0) = 0.1

P (Y = 0|X = 1) = 0.1

P (Y = 1|X = 1) = 0.7

P (Y = 2|X = 1) = 0.2

P (Y = 0|X = 2) = 0.1

P (Y = 1|X = 2) = 0.2

P (Y = 2|X = 2) = 0.7

Now, we can build a classifier Ŷ = h(X) which picks the value with highest probability given X as prediction.
i.e. for such classifier, h(X) = X

Given this setup, the example classifier satisfies:

• Statistical Parity: Since the classifier Ŷ = h(X) is based on X and X ⊥ A, the classifier’s predictions will
be independent of A, ensuring statistical parity. It’s easy to verify that

P (Ŷ = y|A = 0) = P (Ŷ = y|A = 1),∀y ∈ {0, 1, 2}

• Equalized Odds: We can observe that since A and h(X), Ŷ is independent,

P (h(X) = Ŷ |A) = P (h(X) = Ŷ )

That implies Ŷ ⊥ A|Y ensuring Equalized Odds for multiple class classification [1].

A counter example like this should suffice for disproving the statement under |Y | ≥ 3.
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Q2

2.1.1

Since B is uniformly distributed over {0, 1}, we have:

Pr(B = 0) = Pr(B = 1) =
1

2

Given a specific value xi from the k possible values of X,

Pr(X ′ = xi) = PrP (X
′ = xi|B = 0)Pr(B = 0) + PrQ(X

′ = xi|B = 1)Pr(B = 1)

Since B is independent of Y, and X ′ = X ∼ P when B = 0 and X ′ = X Q when B = 1 we have:

Pr(X ′ = xi) = PrP (X
′ = xi|B = 0)Pr(B = 0) + PrQ(X

′ = xi|B = 1)Pr(B = 1)

= PrP (X
′ = xi)Pr(B = 0) + PrQ(X

′ = xi)Pr(B = 1)

=
1

2
(PrP (X ′ = xi) + PrQ (X ′ = xi))

i.e. X ′ ∼ M = 1
2 (P +Q) finished the proof.
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2.1.2

Firstly, by definition we have:

I(X ′|B) = H(X ′)−H(X ′|B)

According to 2.1.1, X ′ ∼ M = 1
2 (P +Q).

H(X ′) = −
k∑

i=1

PrM (X ′ = xi) logPrM (X ′ = xi)

= −
k∑

i=1

M(xi) logM(xi)

= −
k∑

i=1

1

2
(P (xi) +Q(xi)) log

(
1

2
(P (xi) +Q(xi))

)
The conditional entropy of H(X ′|B) can be calculated by following:

H (X ′ | B) =
1

2
H(X | B = 0) +

1

2
H(X | B = 1)

=
1

2

(
−

k∑
i=1

P (xi) logP (xi)

)
+

1

2

(
−

k∑
i=1

Q (xi) logQ (xi)

)

Combining the two terms we have:

I(X ′|B) = H(X ′)−H(X ′|B)

= −
k∑

i=1

M(xi) logM(xi) +
1

2

(
k∑

i=1

P (xi) logP (xi)

)
+

1

2

(
k∑

i=1

Q (xi) logQ (xi)

)

Given that KL divergence is calculated by

DKL(P ||M) =

k∑
i=1

P (xi) log
P (xi)

M (xi)

DKL(Q||M) =

k∑
i=1

Q (xi) log
Q (xi)

M (xi)

Since DJS(P,Q) = 1
2DKL(P ||M) + 1

2DKL(Q||M), we have:

DJS(P,Q) =
1

2

k∑
i=1

P (xi) log
P (xi)

M (xi)
+

1

2

k∑
i=1

Q (xi) log
Q (xi)

M (xi)

=
1

2

k∑
i=1

P (xi) (logP (xi)− logM (xi)) +
1

2

k∑
i=1

Q (xi) (logQ (xi)− logM (xi))

= −
k∑

i=1

M(xi) logM(xi) +
1

2

(
k∑

i=1

P (xi) logP (xi)

)
+

1

2

(
k∑

i=1

Q (xi) logQ (xi)

)
= I(X ′|B)

Hence, we have proved that I(X ′|B) = DJS(P,Q)
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Q3

Assume we have a classifier h(X) having the outcome related to g(X):

h(X) = 0, if g(X) = 1

h(X) = 1, if g(X) = 0

For statistical disparity, denote p0 = PrA=0(g(X) = 1) and p1 = PrA=1(g(X) = 1), we have:

∆DP = |PrA=0(g(X) = 1)− PrA=1(g(X) = 1)|
= |p0 − p1|

Since p0 ≥ 0 and p1 ≥ 0, assume p0 ≥ p1 without the loss of generalizablity, we have ∆DP = p0 − p1, thus:

1−∆DP = 1− p0 + p1

Therefore, we can express the error of h(X) with p0 and p1:

ϵA=0(h) = Pr(h(X) = 1|A = 0) = PrA=0(g(X) = 0) = 1− PrA=0(g(X) = 1) = 1− p0

ϵA=1(h) = Pr(h(X) = 0|A = 1) = PrA=1(g(X) = 1) = p1

Adding the two terms, we can see that when p0 ≤ p1:

ϵA=0(h) + ϵA=1(h) = 1− p0 + p1

≤ 1−∆DP

Similarly, we can also find another classifier h(X) for p0 ≤ p1 that have the property can be verified this way,
we could have:

h(X) = 1, if g(X) = 1

h(X) = 0, if g(X) = 0

∆DP = p0 − p1

Which error rate can be expressed by:

ϵA=0(h) = PrA=0(h(X) = 1) = PrA=0(g(X) = 1) = p0

ϵA=1(h) = PrA=1(h(X) = 0) = 1− PrA=1(g(X) = 1) = 1− p1

Adding the two terms, we can see that when p0 ≤ p1:

ϵA=0(h) + ϵA=1(h) = 1− p1 + p0

≤ 1−∆DP

Hence we proved, ∃h(X), ϵA=0(h) + ϵA=1(h) ≤ 1−∆DP
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Q4

4.1

To prove that equalized odds holds for h(Z), we want to show the property where:

Pr(Ŷ = 1 | Y = y,A = 0) = Pr(Ŷ = 1 | Y = y,A = 1),∀y ∈ {0, 1}

When y = 1, we can show that the equity between true positive rates on different groups of A holds:

Pr(Ŷ = 1 | Y = 1, A = 0) = Pr(Ŷ = 1 | Y = 1, A = 1)

Starting with the left-hand side, since Ŷ = h(Z), it can be written as:

Pr(h(Z) = 1 | Y = 1, A = 0)

Now, given that Z ⊥ A | Y , which implies:

Pr(h(Z) = 1 | Y = 1, A = 0) = Pr(h(Z) = 1 | Y = 1)

Similarly, for the right-hand side:

Pr(Ŷ = 1 | Y = 1, A = 1) = Pr(h(Z) = 1 | Y = 1, A = 1)

Again, since Z ⊥ A | Y :

Pr(h(Z) = 1 | Y = 1, A = 1) = Pr(h(Z) = 1 | Y = 1)

= Pr(h(Z) = 1 | Y = 1, A = 0)

Similarly, we can also prove that for false positive cases:

Pr(h(Z) = 1 | Y = 0, A = 1) = Pr(h(Z) = 1 | Y = 0)

= Pr(h(Z) = 0 | Y = 0, A = 0)

That means, we have the condition Pr(Ŷ = 1 | Y = y,A = 0) = Pr(Ŷ = 1 | Y = y,A = 1),∀y ∈ {0, 1} hold
which is equivalent to the statement where h(X) satisfies Equalized Odds [2].
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4.2
Using the law of total probability, we can express each term of the left hand side as:

PrA=0(Ŷ = y) = Pr(Ŷ = y | Y = 0, A = 0)× Pr(Y = 0|A = 0)

+Pr(Ŷ = y | Y = 1, A = 0)× Pr(Y = 1|A = 0)

Similarly for A = 1.

PrA=1(Ŷ = y) = Pr(Ŷ = y | Y = 0, A = 1)× Pr(Y = 0|A = 1)

+Pr(Ŷ = y | Y = 1, A = 1)× Pr(Y = 1|A = 1)

Given Z ⊥ A | Y , we have:

Pr(Ŷ = y | Y = 0, A = 0) = Pr(Ŷ = y | Y = 0, A = 1) = Pr(Ŷ = y | Y = 0)

Pr(Ŷ = y | Y = 1, A = 0) = Pr(Ŷ = y | Y = 1, A = 1) = Pr(Ŷ = y | Y = 1)

Plugging the above results into the LHS expression, we get:

LHS =| Pr(Ŷ = y | Y = 0)× (Pr(Y = 0|A = 0)− Pr(Y = 0|A = 1)) +

Pr(Ŷ = y | Y = 1)× (Pr(Y = 1|A = 0)− Pr(Y = 1|A = 1)) |

For brevity, let’s denote:

a := Pr(Ŷ = y | Y = 0)× (Pr(Y = 0|A = 0)− Pr(Y = 0|A = 1))

b := Pr(Ŷ = y | Y = 1)× (Pr(Y = 1|A = 0)− Pr(Y = 1|A = 1))

Given γa := PrA=a(Y = 0), we have:

γ0 = Pr(Y = 0 | A = 0)

γ1 = Pr(Y = 0 | A = 1)

And that means:

Pr(Y = 0 | A = 0) = γ0

Pr(Y = 0 | A = 1) = γ1

(1− Pr(Y = 0 | A = 0) = (1− γ0)

(1− Pr(Y = 0 | A = 1)) = (1− γ1)

Substitute what we have above for |a|, |b|:

|a| = Pr(Ŷ = y | Y = 0)× |γ0 − γ1|
= Pr(Ŷ = y | Y = 0)× |γ0 − γ1|

|b| = Pr(Ŷ = y | Y = 1)× |(1− γ0)− (1− γ1)|
= Pr(Ŷ = y | Y = 1)× |γ0 − γ1|
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By triangle inequality, we know that |a+ b| ≤ |a|+ |b|, therefore we can know that:

LHS = |a+ b| ≤ |a|+ |b| ≤ |γ0 − γ1| × (Pr(Ŷ = y | Y = 0) + Pr(Ŷ = y | Y = 1))

≤ RHS

The inequality above shows the upper bound of |a+ b|, which is |a|+ |b| consistent with RHS, hence we proved
the inequality.
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4.3
From 4.2, we know that given y ∈ {0, 1}:

∆DP (h ◦ g) = |PrA=0(Ŷ = 1)− PrA=1(Ŷ = 1)| ≤ |γ0 − γ1| × (Pr(Ŷ = 1 | Y = 0) + Pr(Ŷ = 1 | Y = 1))

≤ ∆BR × (Pr(Ŷ = 1 | Y = 0) + Pr(Ŷ = 1 | Y = 1))

|1− PrA=0(Ŷ = 1)− 1 + PrA=1(Ŷ = 1)| ≤ |γ0 − γ1| × (Pr(Ŷ = 0 | Y = 0) + Pr(Ŷ = 0 | Y = 1))

≤ ∆BR × (Pr(Ŷ = 0 | Y = 0) + Pr(Ŷ = 0 | Y = 1))

Since ∆DP (h ◦ g) = |PrA=0(Ŷ = 1) − PrA=1(Ŷ = 1)| = |PrA=1(Ŷ = 1) − PrA=0(Ŷ = 1)|, adding the two
inequalities above we have:

2∆DP (h ◦ g) = 2|PrA=0(Ŷ = 1)− PrA=1(Ŷ = 1)| ≤ ∆BR(TPR+ FPR+ TNR+ FNR)

∵ TPR+ FNR = 1, FPR+ TNR = 1, hold under any classifier, that means the inequality above simplifies to:

∴ 2∆DP (h ◦ g) ≤ 2∆BR

∆DP (h ◦ g) ≤ ∆BR

Hence, we proved that the upper bound of ∆DP (h ◦ g) is actually ∆BR.
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